Voice And Telephony over ATM: Status

Raj Jain

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/

March 1998
Overview

- VTOA: Protocol Stack and Services
- AAL: AAL1, AAL5, New AAL2
- Interworking Function
 - Signaling
 - Addressing
 - Timing and Synchronization
Voice over ATM: Issues

- Connection Setup
- Coding/decoding of voice into bits
- Packing of digital bit stream into cells (AAL1 or AAL5)
- End-to-end transmission of cells (Trunking)
Why VOA?

- Single physical connection for voice, video, data
- Integrated management, maintenance, signaling
 ⇒ Reduced cost
AAL1 or AAL5. AAL5 required.
- One packet per cell
- 64 kbps PCM µ-law or A-law (G.711)

<table>
<thead>
<tr>
<th>DSS2 Q.2931</th>
<th>G.711</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAAL</td>
<td>AAL</td>
</tr>
<tr>
<td>ATM</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
</tbody>
</table>
VTOA Services

- N-ISDN
 - 64 kbps
 - 2×64 kbps
 - 384 kbps
 - 1536 kbps
 - 1920 kbps
 - Multirate N×64 kbps

- Analog
 - 3.1 kHz Voice
 - 7 kHz tones and announcements
Supplementary Services

- Direct Dialing In (DDI)
- Multiple Subscriber Number (MSN)
- Caller Id Presentation
- Caller ID Restriction
- Connected Line ID Presentation
- Connected Line ID Restriction
- Subaddressing

Note: All these are available from UNI 4.0
ISO Supplementary Services

- Name Id
- Call Transfer
- Call Diversion/forwarding
- Call Completion
- Call offer
- Call Intrusion
- Do Not Disturb
- Call Interception
AAL1

<table>
<thead>
<tr>
<th>Convergence Sublayer Indication</th>
<th>Sequence Count</th>
<th>Sequence Number Protection</th>
<th>Parity</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>3b</td>
<td>3b</td>
<td>1b</td>
<td>47B</td>
</tr>
</tbody>
</table>

- Misordering bad \Rightarrow Sequence number
- Convergence Sublayer Indication (CSI)
 Used for clock synchronization
- Constant Bit Rate (CBR)
- Indication of lost or errored cells (Seq #)
AAL 1 Problems

- Fixed size (47B) payload
- Single user per VC
- No partial fill \implies Bandwidth
- Only 64k or N×64k
- No support for
 - Forward error correction
 - Compression (VBR),
 - Silence suppression,
 - Idle channel removal
- Not generally available
AAL 5

- Designed for data traffic
- No per cell length field, No per cell CRC
- One voice packet/cell ⇒ Payload = 8 to 40 bytes

<table>
<thead>
<tr>
<th>User Payload</th>
<th>PAD</th>
<th>Common Part Convergence Sublayer</th>
<th>Common Part Indicator</th>
<th>Length</th>
<th>CRC-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-64kB</td>
<td>0-47B</td>
<td>1B</td>
<td>1B</td>
<td>2B</td>
<td>4B</td>
</tr>
</tbody>
</table>

AAU bit in PTI indicates last cell

The Ohio State University

Raj Jain
Delay

- 48 bytes at 64 kbps = 6 ms ⇒ Need Echo cancellers
- 48 bytes at 16 kbps = 24 ms ⇒ too long
- Can't fill a cell completely
- Current AALs allow segmentation (long packets to multiple cells).
- Do not allow blocking (short packets in one cell)
Low-Bit Rate Voice

- Time to fill 48-byte payload
 @8 kbps = 48 ms
AAL2: History

- Sept 95: T1S1.5 "Short Multiplexed AAL (SMAAL)"
- May 96: ITU-T started AAL-CU
- Feb 97: ITU-T Completed AAL2 (Record: 9 Months)
AAL2

- Ideal for low bit rate voice
- Variable/constant rate voice
- Multiple users per VC
- Compression and Silence suppression
- Idle channel suppression
Protocol Structure

- Common Part specification (CPS)
- AAL2 Negotiation procedure (ANP)
- Service Specific Convergence Sublayer (SSCS)
 Null for Mobile Voice. May have SSCS for Trunking
Cell Format

- STF: Start field = CPS PDU header
- OSF: Offset of the first packet
- SN: Sequence number mod 2, 0 or 1
- P: Parity (odd) of start field
- Pad: Padding (0-47 bytes)
CPS Packet Format

- **Channel ID (CID):** 0 = Not used, 1 = Mgmt, 2-7 = Reserved, 8-255 = User ID
- **Length (LI):** 0-64, Default = 45B
- **User-to-User Indication (UUI):** 0-27 = ID, 28-29 = Resvd, 30-31 = OAM
Protocol Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Fill Delay</th>
<th>Size</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 kbps ADPCM</td>
<td>4 ms</td>
<td>16 B</td>
<td>84%</td>
</tr>
<tr>
<td>32 kbps ADPCM</td>
<td>8 ms</td>
<td>32 B</td>
<td>91%</td>
</tr>
<tr>
<td>64 kbps PCM</td>
<td>4 ms</td>
<td>32 B</td>
<td>91%</td>
</tr>
<tr>
<td>64 kbps PCM</td>
<td>8 ms</td>
<td>64 B</td>
<td>96%</td>
</tr>
<tr>
<td>64 kbps PCM</td>
<td>5.6 ms</td>
<td>45 B</td>
<td>94%</td>
</tr>
</tbody>
</table>
AAL2: Status

- Sept 97: I.363.2 approved
- Sept 97: Segmentation and reassembly
 I.366.1 frozen
- June 98: I.trunk to be frozen
- On-Going:
 - AAL2 negotiations procedures (ANP)
 - Operations, Administration and Maintenance (OAM)
- Future: Interworking with
 - Voice over IP
 - Voice over Frame Relay
VTOA

ATM Network (LAN, WAN, or Satellite)

Desktop

PBX

ISDN

Desktop

Legacy networks

IWF

IWF

IWF

IWF

IWF

IWF

Desktop

Legacy networks

The Ohio State University

Raj Jain

21
ATM-ISDN Interworking

- One ATM connection per N-ISDN channel per call (Current)
- ATM signaling channel (VC=5) mapped to ISDN D channel

```
ATM Terminal
<table>
<thead>
<tr>
<th>ATM Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private ATM</td>
</tr>
<tr>
<td>IWF</td>
</tr>
<tr>
<td>Public ISDN</td>
</tr>
</tbody>
</table>

Private UNI

<table>
<thead>
<tr>
<th>Private UNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private ATM</td>
</tr>
<tr>
<td>IWF</td>
</tr>
<tr>
<td>Private ISDN</td>
</tr>
</tbody>
</table>

UNI T or S/T

<table>
<thead>
<tr>
<th>PNNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
</tr>
</tbody>
</table>
```
IWF Functionality

- User Plane Protocols
- Signaling: Control Plane Protocols
- Timing & Synchronization
- Addressing
User Plane Protocols

G.711
AAL
ATM
Phy
B-TE
Private B-ISDN
S_B
PNNI or T_B
IWF
Q or T
T or S/T
ISDN TE

The Ohio State University
Raj Jain
Control Plane Protocols

- Q.Sig Private N-ISDN (PSS1)
- Q.921+DSS1 Public N-ISDN
- SAAL+DSS2 Public B-ISDN
- PNNI Signaling Private B-ISDN

Diagram:

```
+-----------------+     +-----------------+     +-----------------+     +-----------------+
| DSS2            |     | DSS2            |     | DSS2            |     | DSS1            |
| SAAL            |     | SAAL            |     | SAAL            |     | Q.921           |
| ATM             |     | ATM             |     | ATM             |     | Q.921           |
| Phy             |     | Phy             |     | Phy             |     | Phy             |
| B-TE            |     | Private B-ISDN  |     | T_B             |     | IWF             |
| S_B             |     | T_B             |     | IWF             |     | S/T Public ISDN |
```
Q.2931 Signaling

Setup

Call Proceeding

Alerting

Connect

Connect Ack

Accept
Setup Mapping

- Terminate each protocol, or
- Map each message

ATM | IWF | ISDN

Connect → Connect → Connect → Connect Ack
Connect ← Connect ← Connect ← Connect Ack
Call Clear Mapping

ATM | IWF | ISDN

Release - - Disconnect
Release Complete

T305
Release Complete
T308
Release Complete

The Ohio State University
Raj Jain
Timing & Synchronization

- Phy based (Stratum 4)
- Adaptive (buffer fill based)
- Free-running
E.164 Numbers

- North American Numbering Plan (NANP): 1(614)-555-1212
- E.163 numbering plan for telephony: 12 digits
- E164 numbering plan for ISDN: 15 digits
- Defined in ITU-T recommendation E.164 for ISDN
- ISDN numbers uniquely identify interfaces to public networks
- Administered by public networks (Therefore, are not easily available for private network use)
ATM Addresses

- ATM Forum specifies three NSAP-like address formats: DCC Format, ICD Format, E.164
- NSAP = Network Service Access Point

<table>
<thead>
<tr>
<th>AFI</th>
<th>Initial Domain Id</th>
<th>Domain Specific Part (DSP)</th>
<th>End System Supplied</th>
<th>Not Used in Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Data Country Code (2B)</td>
<td>High-Order DSP (10B)</td>
<td>End System ID (6B)</td>
<td>Selector (1B)</td>
</tr>
<tr>
<td>47</td>
<td>International Code Designator (2B)</td>
<td>High-Order DSP (10B)</td>
<td>End System ID (6B)</td>
<td>Selector (1B)</td>
</tr>
<tr>
<td>45</td>
<td>E.164 Number (8 B)</td>
<td>High-Order DSP (4B)</td>
<td>End System ID (6B)</td>
<td>Selector (1B)</td>
</tr>
</tbody>
</table>

Network supplied
Addressing

- Authority and Format Identifier (AFI)
 39 = ISO DCC,
 47 = British Standards Institute ICD,
 45 = ITU ISDN

- Initial Domain Identifier (IDI). Domain Specific Part (DSP)

- ISDN uses E.164 numbers (up to 15 BCD digits)

- ATM forum extended E.164 addresses to NSAP format. E.164 number is filled with leading zeros to make 15 digits.
Addressing (Cont)

- End System Identifier (ESI):
 48-bit IEEE MAC address
- Selector is for use inside the host and is not used for routing.
- All ATM addresses are 20 bytes long.
- ATM forum removed the division of DSP into areas, etc.
Private networks must support all three formats
Type of Number field = Unknown
Numbering Plan Indication field = ISO NSAP

Public networks must support native E.164 and may optionally support three NSAP-encoded formats. For E.164:
Type of Number field = International number
Numbering Plan Indication field = Recommendation E.164
NSAP is a Misnomer!

- NSAP = Network Service Access Point
 Identifies network layer service entry
- SNPA = Subnetwork point of attachment
 Identifies the interface to subnetwork
- SNPA address (or part of it) is used to carry the packet across the network.
- CLNP uses NSAP to deliver the packet to the right entity inside the host.
- ATM uses NSAP-like encoding but ATM addresses identify SNPA and not NSAP.
Summary

- Circuit emulation services for CBR using AAL1 or AAL5.
- ATM Trunking using AAL2 is being developed. Allows low bit rate VBR, multiple users/cell.
- IWF has to deal with data forwarding, signaling, addressing, and clock synchronization.
References

- For a tutorials on VTOA, Signaling, and PNNI see: http://www.cis.ohio-state.edu/~jain/
ATM Forum, "ATM Trunking using AAL1 for Narrowband Services V1.0," af-vtoa-0089.00, July 1997.

ATM Forum, "PNNI V1.0," af-pnni-0055.000, March 1996.

ATM Forum, "UNI Signaling 4.0," af-sig-0061.000, July 1996.

ITU-T, "B-ISDN ATM Adaptation Layer Specification: Type 2 AAL," I.363.2

VOA Products

- CISCO, Stratacom ATM Switches, Not AAL2.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL</td>
<td>ATM Adaptation Layer</td>
</tr>
<tr>
<td>AAL-CU</td>
<td>AAL Composit User</td>
</tr>
<tr>
<td>ADPCM</td>
<td>Adaptive Differential Pulse Code Modification</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>CBR</td>
<td>Constant Bit Rate</td>
</tr>
<tr>
<td>CCS</td>
<td>Common Channel Signaling</td>
</tr>
<tr>
<td>CES</td>
<td>Circuit Emulation Service</td>
</tr>
<tr>
<td>CID</td>
<td>Channel Identifier</td>
</tr>
<tr>
<td>CPS</td>
<td>Common Part Sublayer</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunications Union -</td>
</tr>
<tr>
<td></td>
<td>Telecommunications Sector</td>
</tr>
<tr>
<td>LI</td>
<td>Length Indicator</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse Code Modulation</td>
</tr>
<tr>
<td>PCR</td>
<td>Peak Cell Rate</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>SMAAL</td>
<td>Short Multiplexed AAL</td>
</tr>
<tr>
<td>SSCS</td>
<td>Service Specific Convergence Sublayer</td>
</tr>
<tr>
<td>UUI</td>
<td>User-to-User Indication</td>
</tr>
<tr>
<td>VBR</td>
<td>Variable Bit Rate</td>
</tr>
<tr>
<td>VTOA</td>
<td>Voice and Telephony over ATM</td>
</tr>
</tbody>
</table>
Thank You!