The Catch-up Game: Quest for the Impact

Raj Jain
Washington University in Saint Louis
Jain@wustl.edu
These slides and recording of this talk are available at:
http://www.cse.wustl.edu/~jain/talks/sigcomm.htm

Overview
1. Is networking still hot or should I change?
2. Will the technology I am working on succeed?
3. Our initial research: Congestion control
4. Lessons Learnt: What is required to make an impact?
5. Current developments – A Limited personal view

Networking = “Plumbing”
- Networking is the “plumbing” of computing
- Almost all areas of computing are network-based.
 - Distributed computing
 - Big Data
 - Cloud Computing
 - Internet of Things
 - Smart Cities
- Networking is the backbone of computing.
 Networking is already great!
Networking is Fueling All Sectors of Economy

- Networking companies are among the most valued companies: Apple, AT&T, Samsung, Verizon, Microsoft, China Mobile, Alphabet, Comcast, NTT, IBM, Intel, Cisco, Amazon, Facebook, …
- All tech companies that are hiring currently are networking companies
- Note: Apple became highly valued only after it switched from computing to communications (iPhone)

Networking = Economic Indicator

Smart Everything

- Smart Watch
- Smart TV
- Smart Car
- Smart Health
- Smart Home
- Smart Kegs
- Smart Space
- Smart Industries
- Smart Cities

What’s Smart?

- Old: Smart = Can think ⇒ Computation
 = Can Recall ⇒ Storage
- Now: Smart = Can find quickly, Can Delegate
 ⇒ Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, …

Am I in the Right Field to Impact?

- YES, Networking is hot!
2. Will the technology I am working on succeed or fail?

History is written by the victors - Winston Churchill

Networking: Failures vs Successes
- 1980: Broadband Ethernet 10Broad36 (vs. baseband)
- 1984: ISDN (vs. Modems)
- 1986: MAP/TOP or Token Bus (vs Ethernet)
- 1988: OSI (vs. TCP/IP)
- 1991: DQDB
- 1992: XTP (vs. TCP)
- 1994: CMIP (vs. SNMP)
- 1995: FDDI (vs. Ethernet)
- 1996: 100BASE-VG or AnyLan (vs. Ethernet)
- 1997: ATM to Desktop (vs. Ethernet)
- 1998: ATM Switches (vs. IP routers)
- 1998: MPOA (vs. MPLS)
- 1999: Token Rings (vs. Ethernet)
- 2003: HomeRF (vs. WiFi)
- 2007: Resilient Packet Ring (vs. Carrier Ethernet)
- QoS, Mobile IP, IP Multicast, IntServ, DiffServ, ...

Technology alone does not mean success.
Requirements for Technology Success

1. **Low Cost:** Low startup cost ⇒ Evolution
 ⇒ Each customer must save.
 2x cost ⇒ 10x performance
2. **Killer Application** (Video on demand)
3. **Coexistence with legacy (Ethernet)**
 Existing infrastructure is more important than new technology ⇒ Even legacy name is important (FDDI vs. 100M Ethernet)
4. **Timely completion (OSI)**
5. **Promised Performance (FDDI)**
6. **Manageability**
7. **Interoperability**

IPv6

- **Requirements for Success**
 1. **Low Cost:** Dual Stack
 Critical for mass technology
 2. **Killer Applications**
 3. **Coexistence with legacy networks**
 4. **Timely completion**
 5. **Promised Performance?**
 6. **Manageability**
 7. **Interoperability**

Transition strategy is very important

Old House vs. New House

- New needs:
 Solution 1: Fix the old house
 Solution 2: Buy a new house
- Changing millions of houses is difficult.

Impact Question 2: Will My Technology Succeed?

- Lower cost or killer application, and transition strategy are key
3. Our Research on Congestion Control
(37 years ago)

Study the past if you would define the future - Confucius

Our Congestion Research

- 1979-1980: High-Speed Network = 10Mbps Ethernet
 - 19.2 kb/s
 - 1 Mb/s
 - File transfer time = 5 minutes
 - Time = 7 hours

- Collaborators: KK Ramakrishnan, DM Chiu, Bill Hawe

- 1. Implicit Indication: Delay Based – Too noisy
- 2. Explicit Congestion Indication: DECBit
 - Question 1. What to do on a timeout?:
 - Conventional Wisdom: Retransmit all packets
 - Our Results: No, Drop the congestion window to 1

The Shower Experiment

- Question 2. How often to go up?
 - Conventional Wisdom: Every packet
 - No, Every round trip

State
- Fast
- Target
- Slow

Control
- Hot
- Cold

Sensor
Fairness Index

- **Question 3:** What is a fair/efficient allocation?
- **Requirements:**
 - Scalable: Apply to n=2 users or n=2 million users
 - Easy to Interpret: Lie between 0 and 1 or 0 and 100%
 - Equal Allocation = 100%
 - If \(k \) of \(n \) receive \(x \) and \(n-k \) users receive zero throughput: the fairness index is \(k/n \).

\[
f(x_1, x_2, \ldots, x_n) = \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \]

AIMD

- **Question 4:** How to achieve fairness and efficiency?
- **Solution:** Additive Increase, Multiplicative Decrease

Reasons for Impact

- This was leading edge research
 - There were 8 papers on congestion control in 1980
 - There are 160 papers in 2016 in IEEE Xplore
- The results were based on solid mathematical foundations, validated by simulations
- Tech Transfer: We found simple ways to explain our results to our management and to the world
 \(\Rightarrow \) Withstood the test of time, 37 years later

4. What is required to make an impact?
1. Select the Right Research Problem

1. Boss tells you (Applies to company employees)
2. Work on the same problem as last year/last decade
 - QoS: 35,613 papers in IEEE Xplore
 2,059 papers in 2016
3. NSF Calls for proposals
4. Be your own boss:
 1. Watch for paradigm shifts
 2. Hype cycles

Adapt to Paradigm Shifts

- 1975: Operating Systems
- 1980: Ethernet Design
- 1985: Congestion Control
- 1990: ATM Networks
- 2000: Optical Networks
- 2005: Wireless Networks
- 2010: Next Generation Internet/SDN
- 2013: Multi-Cloud Computing
- 2016: Security
- ...

Gartner’s Hype Cycle for Emerging Tech 2017

2. Bring it to Completion

1. Analyze/develop new algorithm/idea
 - Make most of your time – don’t throw it in dustbin
2. Publish
 - Required for the annual review. But don’t stop here
3. Bring it to IETF/IEEE/ITU
 - ECN by K. K. Ramakrishnan and Sally Floyd
4. Implement and open source
 - Slow start by Van Jacobson
5. Productize
 - SDN (Nicira) by Casado, McKeown, …
3. Every Person is a Company

- Companies need:
 1. Product Idea
 2. Engineering
 3. Marketing
 4. Sales
- Measure success by adoption. Publication ≠ Sales
- Balance your research investment: Diversify
 - Long term 70%
 - Medium Term 20%
 - Short Term 10%
- **10-20-70 Formula**: 10% of R&D on distant future, 20% near future, 70% on today’s products [Google]

4. Don’t Be Let Down by a Failure

- Success is filled with failures.
 - 90% Rejection rate from NSF
 - 50% Rejection rate from Journals
 - Rejections always result in improving the paper
- Think Positive: Good things may happen after bad ones
 - A company refused to extend funding ⇒ Nayna
 - A paper rejected does not mean the idea is bad
 - Fairness Index was rejected ⇒ 3560 citations
 - Good news may not be good in the long term

Academics: Challenges

- Need to get too deep in one area
 ⇒ Can't move with fast changing world
- Time has shrunk. No topics remains hot for 5 years
 - PhD topics become out of date by the time a student completes the PhD
- Difficult to be both entrepreneur and academic

Entrepreneurs vs. Academics: Issues

- Different Belief Systems
 - Laxmi: Goddess of Wealth
 - Saraswati: Goddess of Knowledge
 - Open Flow
 - SDN
 - NFV
 - MEC
 - 2012 2013
 - 2008 2011 2012 2013
Entrepreneur vs. Academics: Issues (Cont)

- Different Motivators: Money vs. publications
- Different Requirements: customers vs. citations
- Different Languages: English vs. Greek λ, μ,
- Different Playgrounds: Business vs. Technical Conf.
- Different Time Scales: Short-term vs. Long Term

Summary: What is Required to Make an Impact?

1. Every person is a company
2. Select the right problem
3. Bring it to completion = Adoption

5. Recent Research Topics

1. Multi-Cloud Computing
2. IoT/Smart Cities
3. Security
4. Blockchains

Not an exhaustive list. Just personal areas of research.

Trend: Micro-Cloud Computing

- Cloud service started in 2006
- Then: Cloud = Large Data Center. Multiple VMs managed by a cloud management system (OpenStack)
- Today: Cloud = Computing using virtual resources
 - μCloud = Cloud in a server with multiple VMs managed by OpenStack
Trend: Mobile Edge Computing

- To service mobile users/IoT, the computation needs to come to edge ⇒ Mobile Edge Computing

Trend: Micro-Services

- All major applications, such as, Facebook, Netflix, etc. consist of a number of micro-services instantiated on demand on virtual machines at multiple locations

Multi-Cloud Hierarchy

- Wide area clouds, local area clouds (home routers with cloud features), Personal area clouds (cars), body area clouds (smart phone)

Trend: Software Defined Multi-Cloud

- Orchestrating devices to Orchestrating Clouds

Multi-Cloud Computing

- Most applications are/will be distributed over multiple clouds
- SDN to manage multi-cloud applications
- Healthcare (IoT) use case is an example

A 7-Layer Model of IoT

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>Smart Grid, Connected home, Smart Health, Smart Cities, …</td>
</tr>
<tr>
<td>Acquisition</td>
<td>Sensors, Cameras, GPS, Meters, Smart phones, …</td>
</tr>
<tr>
<td>Interconnection</td>
<td>DECT/ULE, WiFi, Bluetooth, ZigBee, NFC, …</td>
</tr>
<tr>
<td>Integration</td>
<td>Sensor data, Economic, Population, GIS, …</td>
</tr>
<tr>
<td>Analytics</td>
<td>Machine learning, predictive analytics, Data mining, …</td>
</tr>
<tr>
<td>Apps and SW</td>
<td>SDN, SOA, Collaboration, Apps, Clouds</td>
</tr>
<tr>
<td>Services</td>
<td>Energy, Entertainment, Health, Education, Transportation, …</td>
</tr>
</tbody>
</table>

Washington University in St. Louis

©2017 Raj Jain
A 7-Layer Model of Smart Cities

Services
- Energy, Entertainment, Health, Education, Transportation, water, ...

Apps and SW
- SDN, SOA, Collaboration, Apps, **Clouds**

Analytics
- Machine learning, predictive analytics, Data mining, ...

Integration
- Sensor data, Economic, Population, GIS, ...

Interconnection
- DECT/ULE, WiFi, Bluetooth, ZigBee, NFC, ...

Acquisition
- Sensors, Cameras, GPS, Meters, Smart phones, ...

Infrastructure
- Roads, Trains, Buses, Buildings, Parks, ...

Areas of Research for IoT/Smart Cities

1. **PHY**: Smart devices, sensors giving real-time information
2. **Datalink**: WiFi, Bluetooth, ZigBee, IEEE 802.15.4, …
 - Broadband: DSL, FTTH, Wi-Fi, 5G, …
3. **Routing**: Mesh networking, …
4. **Analytics**: Big-data, data mining, Machine learning, Predictive analytics, …
5. **Apps & SW**: SDN, SOA, Cloud computing, Web-based collaboration, Social networking, …
6. **Applications**: Remote health, On-line education, on-line laboratories, …
7. **Security**: Privacy, Trust, Identity, Anonymity, …

Attack Surface

1. **IoT Devices**
2. **IoT wireless access technology**: DECT, WiFi, Z-wave, …
3. **IoT Gateway**: Smart Phone
4. **Home LAN**: WiFi, Ethernet, Powerline, …
5. **IP Network**: DNS, Routers, …
6. **Higher-layer Protocols**
7. **Cloud**
8. **Management Platform**: Web interface
9. **Life Cycle Management**: Booting, Pairing, Updating, …

Internet of Harmful Things

Researchers at DEFCON 3, hacked a smart toilet, making it flush incessantly and closing the lid repeatedly and unexpectedly. Causing a **Denial of Service** Attack.

Ref: http://www.computerworld.com/article/2486502/security worms may create an internet of harmful things says symantec take note amazon html
DEFCON

- Hacker’s conference
- 20,000+ attendees
- All anonymous

Ref: https://www.ethicalhacker.net/features/opinions/first-timers-experience-black-hat-defcon

DEFCON 2017

- Hacking voting machines
- Hack connected vehicles
- Hacking the cloud
- Hacking travel routers
- Clone RFID in real time
- Breaking the Uber badge ciphers
- Counterfeit hardware security devices, RSA tokens
- Fool antivirus software using AI
- How to track government spy planes
- Break bitcoin hardware wallets
- DARPA Cyber Grand Challenge (2015, 2016)

Confidentiality
Integrity
Authentication

Teaching CIA methods w/o hacking is not sufficient

IoT and Security

- Security is a key issue in the adoption of IoT or Smart Cities
- Hacking is an important part of any security exercise

Blockchains: Centralized to Decentralized

- **Trend**: Make everything decentralized with no central point of control
- Two perfect strangers can exchange money, make a contract without a trusted third party
- Decentralized systems are
 1. More reliable: Fault tolerant
 2. More secure: Attack tolerant
 3. No single bottleneck ⇒ Fast
 4. No single point of control ⇒ No monopoly
- Blockchain is one way to do this among **untrusted multi-domain** systems.

Time is a cycle: Distributed vs. Centralized debate
Examples of Centralized Systems

- **Banks**: Allow money transfer between two accounts
- **Currency**: Printed and controlled by the government
- **Stock Exchanges**: Needed to buy and sell stocks
- **Networks**: Certificate Authorities, DNS

In all cases:
1. There is a central third party to be trusted
2. Central party maintains a large database of information ⇒ Attracts Hackers
3. Central party may be hacked ⇒ affects millions
4. Central party is a single point of failure. Can malfunction or be bribed.

Networking Applications of Blockchains

- **Multi-Domain Systems**:
 - Multiple Cloud Service Providers
 - Multiple cellular providers
 - Multi-Interface devices: WiFi, Cell, Bluetooth, …
 - BGP: BGP Authentication

- **Globally Centralized Systems**:
 - DNS
 - Certificate Authorities

Explore blockchains for multi-domain/centralized systems

Networking Applications (Cont)

- **Public Key Infrastructure**
 - Certificate Authorities issue certificates
 - Single Point of Failure
 - Diginotar – Dutch certificate authority was compromised in 2011)

- **NameCoin**: A decentralized key-value registration and transfer platform using blockchains.
 - A decentralized **Domain Names Registry**
 - .bit domain names

- DARPA issued a RFP for Secure Decentralized Messaging using Blockchains

Summary

1. Our goal is to make an impact. Networking was a hot field when we started and still is.
2. The technology that you design should have the right transition strategy, lower cost or killer application
3. Tech Transfer: Make sure your results are based on solid mathematical foundations, validated by simulations and still can be explained simply.
4. You are a company: Select right topics and complete. Complete = Adoption/Implementation
Conclusion

No impact if your research is not adopted

Thanks to Those Who Changed My Life

Prof. Raman Mehra, Harvard
Prof. Ugo Gagliardi, Harvard
Dr. Terry Potter, DEC
Prof. Jerome Saltzer, M.I.T.
Prof. M. R. Chidambaram, I.I.Sc.
Shri Shanti Lal Jain, Father
Smt. Sulochana Devi Jain, Mother
Aunt
Prof. N. L. Jain, GEC, Rewa
Prof. Jon Turner, Wash U
My Family

Thanks To Colleagues, Mentors, Supporters, Students, ...

- Amitabh Mishra
- Anurag Kumar
- Arjan Durresi
- Carey Williamson
- Dah Ming Chiu
- Dan Grossman
- Darlene Fisher
- Dave Oran
- Dave Ward
- David Corman
- David Lucantoni
- Fred Templin
- George Varghese
- H. Anthony Chan
- Imrich Chlamtac
- Jay Iyer
- Jon Crowcroft
- K. K. Ramakrishnan
- Lyman Chapin
- Mahbub Hassan
- Mod Marathe
- Mohammed Samaka
- Mostafa Ammar
- R. Srikanth
- Radia Perlman
- Raj Yavatkar
- Rick Bunt
- Sastri Kota
- Shyam Parekh
- Sonia Fahmi
- Subharthi Paul
- Sudipta Sengupta
- Suman Banerjee
- Victor Bahl
- Vint Cerf
- And many more...

Scan This to Download These Slides