TCP/IP over ATM over Satellite Links

Raj Jain
The Ohio State University
Seong-Cheol Kim
Samsung Electronics Co. Ltd.

New Address: Raj Jain, Washington University in Saint Louis,
jain@cse.wustl.edu, http://www.cse.wustl.edu/~jain

The Ohio State University
Overview

- TCP over ABR over Satellites
- TCP over UBR over Satellites
- Improving TCP over UBR
- Improving TCP over ABR
Our Goal in ATM Forum

- Ensure that the new ATM Forum TM 4.0 spec is “Satellite-friendly”
- There are no parameters or requirement that will perform badly in a long-delay satellite environment
- Users can use paths going through satellite links without requiring special equipment
Classes of Service

- **ABR (Available bit rate):** Follows feedback. Network gives max throughput with minimum loss.

- **UBR (Unspecified bit rate):** User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.

- **CBR (Constant bit rate):** User declares required rate. Throughput, delay and delay variation guaranteed.

- **VBR (Variable bit rate):** Declare avg and max rate.
 - **rt-VBR (Real-time):** Conferencing. Max delay and delay variation guaranteed.
 - **nrt-VBR (non-real time):** Stored video. Mean delay guaranteed.
ABR: The Explicit Rate Scheme

- Sources send one RM cell every n cells
- The RM cells contain “Explicit rate”
- Destination returns the RM cell to the source
- The switches adjust the rate down
- Source adjusts to the specified rate
- Interoperates with all switch algorithms
UBR

- No specifications on switch or source behavior
- The sources send at peak rate.
- Switches drop cells if buffers full.
- Switch behavior similar to current routers.
- Intelligent protocols can use loss as implicit congestion indication and reduced load
- TCP is one such intelligent protocol Internet
 ⇒ Engineering Task Force (IETF) prefers UBR
- UBR+:
 - Early packet discard (EPD)
 - EPD + Selective discard (Fair buffer allocation)
Internet Protocols over ATM

- ATM Forum has designed ABR service for data
- UBR service provides no feedback or guarantees
- Internet Engineering Task Force (IETF) prefers UBR for TCP
Issues Studied

- What is the performance of TCP over UBR over Satellites?
 - Performance with limited buffers
 - Buffer requirements for zero loss
- What is the performance of TCP over ABR over Satellites?
 - Performance with limited buffers
 - Buffer Requirement for zero loss
 - Performance with ABR only in the backbone
Issues Studied (Cont)

- How can we improve the performance of UBR?
 - Early Packet Discard in switches?
 - Fast Retransmit Recovery in end systems?
 - Fair buffer allocation in switches?
- How can we improve the performance of ABR over satellites?
 - Better switch Algorithms
 - VS/VD
TCP over UBR over Satellites

- No loss for TCP if Buffers = \(\Sigma \) TCP receiver window
- Each receiver window \(\geq \) RTT for full throughput
- Required buffering does not scale well with the number of sources.
- Unfairness in many cases.
- No starvation \(\Rightarrow \) Lower throughput shows up as increased file transfer times = Lower capacity

Conclusion: UBR may be OK for: LAN, w/o VBR, Small number of sources, **AND** cheap implementation but not for long delay paths.
TCP Over ABR over Satellites

- EFCI (binary feedback) requires many (10s) of RTT to stabilize ⇒ Not good for satellites
- Need explicit rate (ER) feedback in switches
- ER performance depends upon the switch algorithm ⇒ Need switch algorithms with fast transient response
- Explicit Rate Indication for Congestion Avoidance (ERICA) is one such example.
 (See http://www.cis.ohio-state.edu/~jain/)
TCP over ABR (Cont)

Following statements are based on ERICA algorithm.

- No cell loss for TCP if switch has Buffers = 4 × RTT.
- No loss for any number of TCP sources with 4 × RTT buffers.
- No loss even with VBR.
 W/o VBR, 3×RTT buffers will do.
 Tried with various VBR patterns and video traffic.
- Under many circumstances, 1× RTT buffers may do.
- Required buffers depend upon RTT, feedback delay, switch parameters, and characteristics of VBR.
Improving TCP over UBR

- EPD: Helps improve the efficiency. But does not improve fairness.
- Fast Retransmit/Recovery: Helpful only if single packet loss. Hurts if multiple packets are lost. ⇒ Improves efficiency in LANs Reduces efficiency in WANs and Satellites
- Fair Buffer Allocation/Selective Drop: Improves fairness and efficiency in WANs and Satellites Improvement in LANs is small.
Virtual source/virtual destinations (VS/VD) follow all notification/control rules.

Can be hop-by-hop.

Virtual dest/sources maintain per-VC queues.
Improving TCP over ABR

- Virtual Source/Virtual destination:
 - Reduces response time during first round-trip
 - Good for satellites

![Diagram](image_url)

The Ohio State University

Raj Jain
ATM Over Satellites: Open Issues

- Effect of on-board switching
- Multipoint connections
- Buffer sizing for on-board switches
- Switch algorithms for satellite networks
- Optimization of performance of TCP/IP over satellite ATM networks
- Multi-satellite networks
- QoS models for ATM service over satellites
- Suitability of commercial switches for on-board switching
Summary

- Binary feedback too slow for rate control. Especially for satellites.
- ER switches provide much better performance than EFCI.
- UBR+ may be OK for LANs but not for long delay paths.
- ABR service required for long-delay or high-speed networks.
- VS/VD may help in satellite paths.
Our Contributions and Papers

All our contributions and papers are available on-line at
http://www.cis.ohio-state.edu/~jain/

- See Recent Hot Papers for tutorials.
Thank You!