Switch Algorithms for Multipoint ABR Service over ATM Networks

Raj Jain

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Introduction to point-to-multipoint ABR
Basic ABR pt-mpt Resource Allocation
Extension/optimization of pt-mpt algorithms
Mpt-pt: What should be the goal of allocation?
Extension of ERICA to mpt-pt
Sources send one RM cell every n cells
The RM cells contain “Explicit rate”
Destination returns the RM cell to the source
The switches adjust the rate down
Source adjusts to the specified rate
ERICA+

- Time is slotted into averaging intervals
- ABR capacity = \([\text{link capacity} - (\text{VBR} + \text{CBR load})] \times f(\text{queue length})\)
- Estimate input rate = \(\sum \text{CCR}_j\)
- overload = input rate/ABR capacity
- \(\text{ER}_j_\text{efficiency} = \frac{\text{CCR}_j}{\text{overload}}\)
- \(\text{ER}_\text{fairshare} = \frac{\text{ABR capacity}}{\# \text{ of active sources}}\)
- IF overload \(\leq 1 + \delta\) THEN \(\text{ER}_j = \max(\text{ER}_j_\text{efficiency}, \text{ER}_\text{fairshare}, \max\text{ER}_{\text{previous}})\)

 ELSE \(\text{ER}_j = \max(\text{ER}_j_\text{efficiency}, \text{ER}_\text{fairshare})\)
- \(\max\text{ER}_{\text{current}} = \max(\max\text{ER}_{\text{current}}, \text{ER}_j)\)
- \(\text{ER \ in \ BRM}_j = \min(\text{ER \ in \ BRM}_j, \text{ER}_j)\)
Point-to-Multipoint ABR

RM Cell \(_A\)

RM Cell \(_B\)

RM Cell \(_C\)

RM Cell \(_{\min(B,C)}\)
Basic Pt-Mpt: Results

- ABR with ERICA (extended for multipoint) works ok
- Efficiency, fairness, responsiveness is maintained
- Consolidation noise due to asynchronous arrival of feedback from different leaves appears as oscillations
- Additional delay due to FRM wait and BRM consolidation
 ⇒ slower transient response than point-to-point
- Minimum of all paths is allocated
 ⇒ Some links are underutilized
- Queue control (ERICA+) is required for stability
Feedback oscillates between 70 and 140.
Point-to-Multipoint Connections: Issues

- If you send BRM on every FRM, you may give feedback without receiving any
 ⇒ Need to ensure that at least one feedback has been received before sending a BRM.
 Otherwise, you may give PCR

- Not all downstream feedbacks in an upstream feedback ⇒ consolidation noise

- Conclusion: Feedback should not be FRM driven
Scalability

- If the feedback is BRM driven:
 Should we wait for BRMs from all branches?
 Yes \Rightarrow Delay may be long. Non-responsive branches?
 No \Rightarrow Number of BRMs $>>$ FRMs

Root → Branch Point → Branch Point → Leaf 1
Leaf 2
Leaf 3

\lfloor = FRM \lfloor = data \lfloor = BRM
Previous Algorithms

- **Algorithm 1:** Simply turn around FRM cells with the current minimum and reset minimum
 - Feedback may be sent without receiving any
 - Partial feedback \Rightarrow Noise

- **Algorithm 2:** Turn around FRM only if at least one BRM has been received since last BRM was sent
 - Solves “no feedback problem” but has noise

- **Algorithm 3:** Do not turn around FRM cells. Simply flag the receipt of the FRM, and return the first BRM (with modified fields) to arrive after that
 - Solves “no feedback problem” but has noise
Algorithm 4: Wait till BRMs are received from all branches after last BRM was sent, and return the last one (with modified fields)

- Transient response too slow
New Algorithms

- **Algorithm 5 (new):** If the ER in the BRM is *much less* than the last ER sent (or CCR), do not wait ⇒ send the BRM, but do not reset the values: reset when feedback from all leaves is received
 - BRM to FRM ratio may exceed one
- **Algorithm 6:** For every premature BRM cell, increment a counter. Decrement the counter the next time a BRM giving a higher rate than the last sent is to be returned, but do not return the BRM
 - Overload at the current switch may not be fed back in a timely manner
Algorithm 7: When a BRM is received, invoke the switch algorithms for all outgoing branches before deciding whether to send feedback.
Simulation Results 2

- Algorithms 1, 2, 3: noise, unfair, unstable
- Algorithms 4, 5, 6: no noise, but slow response
- Algorithm 7: no noise and fast response
Performance Comparison

- Studied 4 existing and 3 new algorithms.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Med</td>
<td>>Med</td>
<td>>Med</td>
<td>>>Med</td>
</tr>
<tr>
<td>Transient Response</td>
<td>Fast</td>
<td>Med</td>
<td>Med</td>
<td>Slow</td>
<td>Fast for overload</td>
<td>Very fast for overload</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>High</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>BRM:FRM</td>
<td>1</td>
<td>< 1</td>
<td>≤ 1</td>
<td>≤ 1</td>
<td>may > 1</td>
<td>lim = 1</td>
<td>lim = 1</td>
</tr>
<tr>
<td>Sensitivity to branch points and levels</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Med</td>
<td>>Med</td>
<td>Med</td>
<td>Med</td>
</tr>
</tbody>
</table>
Multipoint Consolidation: Results

- Consolidation algorithms offer tradeoffs between complexity, transient response, noise, overhead and scalability.
- The new algorithms 6 and 7 speed up the transient response, while eliminating consolidation noise and controlling overhead.
Multi-point-to-Point VCs

- Problem with AAL5: Cell interleaving.
- VP merge: VCI = sender ID
 VPs are used for other purposes.
- VC merge: Buffer at merge point till EOM bit = 1.
Sw₂ has to deal with

- Two VCs: Red and Blue
- Four sources: Three red sources and one blue source
- Three flows: Two red flows and one blue
Fairness Definitions

- Source-based:
 N-to-one connection = N one-to-one connections ⇒ Use max-min fairness among sources

- VC/Source-based: Allocate bandwidth among VCs
 For each VC, allocate fairly among its sources

- Flow-based: Flow = VC coming on an input link.
 Switch can easily distinguish flows.

- VC/Flow-based:
 1. Allocate bandwidth fairly among VCs
 2. For each VC, allocate fairly among its flows
Example

- How is the bandwidth of LINK_3 allocated?
- Source: \{S_1, S_2, S_3, S_A\} \leftarrow \{37.5, 37.5, 37.5, 37.5\}
- VC/Source: \{S_1, S_2, S_3, S_A\} \leftarrow \{25, 25, 25, 75\}
- Flow: \{S_1, S_2, S_3, S_A\} \leftarrow \{25, 25, 50, 50\}
- VC/Flow: \{S_1, S_2, S_3, S_A\} \leftarrow \{18.75, 18.75, 37.5, 75\}

All links are 150 Mbps
Mpt-pt Issues

- Cells of senders in the same multipoint-to-point VC cannot be distinguished
- Question: Can we achieve source-based fairness?
 Answer: Yes!
- We extended ERICA to achieve source based fairness for mpt-pt VCs

The Ohio State University

Raj Jain
Changes to ERICA+

- Remove fair share term (# active sources)
- Options:
 - Use CCRjmax instead of CCRj
 - Maximum is calculated in successive intervals
 - To minimize oscillations, use exponential averaging options for:
 - Input rate
 - ABR capacity
 - maxERprevious
Merging Point Algorithm

- Maintain a bit at the merging point for each flow being merged
 Bit = 1 ⇒ FRM received from this flow after BRM sent to it

- BRMs are duplicated and sent to flows whose bits are set, then bits are reset

Diagram:

- Leaf 1
- Leaf 2
- Merge Point
- Root

Symbols:

- | = FRM
- [] = data
- □ = BRM
Simulation Parameters

- Unidirectional traffic
- RIF = 1/32, 1
- Rule 6 disabled
- Queue control: \(a = 1.15 \), \(b = 1 \), drain limit = 50%, target queuing delay = 1.5 s
- Measurement interval = 5 ms, 200 \(\mu s \)
- One cell long packets (Avoids VC merging issues)
- Max CCR and averaging maxERprevious used
- Link lengths in kms: \{LINK1, LINK2, LINK3\} = \{50, 500, 5000\}, \{5000, 500, 50\}
Upstream Bottleneck

- Goal: \{S1, S2, S3, S4, SA\} → \{16.7, 16.7, 58.3, 58.3, 16.7\}
- ICRs: \{S1, S2, S3, S4, SA\} ← \{20, 20, 30, 80, 10\}
- Results are similar with different link lengths, RIF = 1/32, 1, interval length = 5 ms, 200 µs (no RMs for S1, S2, SA for 4 intervals; for S3, S4 for 1 interval)

All links are 150 Mbps, except LINK1 which is 50 Mbps
Simulation Results

- Upstream Bottleneck, LINK3 = 5000 km,
 RIF = 1, interval = 5 ms

WAN 4-leaf with upstream bottleneck: ACRs

Simulation Results

- Upstream Bottleneck, LINK3 = 5000 km,
 RIF = 1, interval = 5 ms

WAN 4-leaf with upstream bottleneck: ACRs
Queue Lengths

WAN 4-leaf with upstream bottleneck

Queue Length for Switch 1
Queue Length for Switch 2
Queue Length for Switch 3
Link Utilization

WAN 4-leaf with upstream bottleneck

Utilization for Link 1
Utilization for Link 2
Utilization for Link 3

Time in milliseconds

Link 1 and 3
Link 2
Cells Received

WAN 4-leaf with upstream bottleneck

Cells Received at dS1
Cells Received at dSA

dSA:ds₁ ≈ 80k:700k
≈ 16.67:150
Lessons Learnt

- Avoid determining the effective number of active sources
- Avoid estimation of rates of sources, or determining if a source is bottlenecked at this link
- Use only per-VC or per-port measurements and not per-flow or per-source
- Do not use CCR values from BRM cells
 CCR from FRM cells can be used
Summary

- ERICA+ modified for pt-mpt works ok
- Additional delay due to FRM wait and BRM consolidation ⇒ slower transient response than pt-pt
- Two new algorithms 6 and 7 speed up the transient response, while eliminating consolidation noise and controlling overhead
- Four Different Fairness Definitions: source, flow, VC/Source, VC/flow
- Source-based fairness can be achieved even though sources can not be distinguished in an mpt-pt VC
References

- All our contributions and papers are available on-line at http://www.cis.ohio-state.edu/~jain/
 See Recent Hot Papers for tutorials.

References (Cont)

References (Cont)

Thank You!

This work was partly sponsored by Rome Laboratory/C3BC under Contract #F30602-96-C-0156