Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/talks/in3_in.htm
Overview

1. What is Internet 3.0?

2. Why should you keep on the top of Internet 3.0?

3. What are we missing in the current Internet?

4. Our Proposed Architecture for Internet 3.0: GINA
What is Internet 3.0?

- Internet 3.0 is the next generation of Internet
- Named by me along the lines of “Web 2.0”
- Also known as “Global Environment for Networking Innovations” or GENI
 (Internet 3.0 is more intuitive then GENI)
- National Science Foundation is planning a $300M+ research and infrastructure program on GENI
 ⇒ Most of the networking researchers will be working on GENI for the coming years
Web 2.0

Buy the bubble: Fortune's Web 2.0 investment guide

2005 Venture Capital Web 2.0 investment statistics: US entrepreneurs raise ten times more than Europe

<table>
<thead>
<tr>
<th>Web 1.0</th>
<th>Web 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publisher generated content</td>
<td>User generated content</td>
</tr>
<tr>
<td>Personal web sites</td>
<td>Blogs</td>
</tr>
<tr>
<td>Content Mgmt Systems</td>
<td>Wikis</td>
</tr>
<tr>
<td>Directories</td>
<td>Tagging</td>
</tr>
</tbody>
</table>

Life Cycles of Technologies

$ Potential

Research Hype Disillusionment Success or Failure

Time
Hype Cycle 2004

- WiMAX
- UWB
- Mesh Networks - Sensors
- Mesh Networks – Wide Area
- RFID
- Wi-Fi
- Hot Spot
- VOIP

Visibility vs. Maturity

Technology: Trigger, Peak of Expectations, Trough of Disappointment, Slope of Enlightenment, Plateau of Productivity

Based on Gartner Research (July 2004)
Industry Growth: Formula for Success

- **10-20-70 Formula**: 10% of R&D on distant future, 20% on near future, 70% on today’s products [Google]
Internet Generations

- **Internet 1.0** (1969 – 1989) – Research project
 - RFC1 is dated April 1969.
 - ARPA project started a few years earlier
 - IP, TCP, UDP
 - Mostly researchers
 - Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS

- **Internet 2.0** (1989 – Present) – Commerce ⇒ new requirements
 - Security RFC1108 in 1989
 - NSFnet became commercial
 - Inter-domain routing: OSPF, BGP,
 - IP Multicasting
 - Address Shortage IPv6
 - Congestion Control, Quality of Service,…
Ten Problems with Current Internet

1. Assumes live and awake end-systems
 Does not allow communication while sleeping
 Many energy conscious systems today sleep.

2. Identity and location in one (IP Address)
 Makes mobility complex.

3. Location independent addressing
 ⇒ Most services require nearest server.
 ⇒ Also, Mobility requires location

4. Single-Computer to single-computer
 communication ⇒ Numerous patches need for
 communication with globally distributed
 systems.
Problems (cont)

5. No representation for real end system: the human.

6. Designed for research
 ⇒ Trusted systems
Used for Commerce
 ⇒ Untrusted systems

7. Control, management, and Data path are intermixed ⇒ security issues
8. Difficult to represent organizational, administrative hierarchies with just two levels: domain and inter-domain

9. Symmetric Protocols ⇒ No difference between a mote and a Google server.

10. Stateless ⇒ Can’t remember a flow ⇒ QoS difficult. QoS is generally for a flow and not for one packet
Our Proposed Solution: GINA

- Generalized Inter-Networking Architecture
- Take the best of what is already known
 - Wireless Networks, Optical networks, …
 - Transport systems: Airplane, automobile, …
 - Communication systems: Wired Phone networks, Cellular networks,…
- Develop a consistent general purpose, evolvable architecture that can be customized by implementers, service providers, and users
GINA: Overview

Generalized Internet Networking Architecture

1. Separates address and ID ⇒ Allows mobility
2. Hybrid (Packet and stream based) communication ⇒ Allows strict real time constraints
3. Delegation to servers ⇒ Allows energy conservation and simple devices
4. Control and data path separation ⇒ Allows non-packet based (e.g., power grid, wavelength routers, SONET routers) along with packet based data. The control is pure packet based.
5. Service based IDs = Distributed servers Allows mxn cast.
Names, IDs, Addresses

Name: John Smith
ID: 012-34-5678
Address:
1234 Main Street
Big City, MO 12345
USA

- Address changes as you move, ID and Names remain the same.
- Examples:
 - Names: Company names, DNS names (google.com)
 - IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
 - Addresses: Wired phone numbers, IP addresses
Objects in GINA

- Object = Addressable Entity
- Current: End-Systems and Intermediate Systems
- GINA:
 - Computers, Routers/Firewalls….
 - Networks
 - Humans
 - Companies, Departments, Cities, States, Countries, Power grids
 - Process in a computer
 - Recursive ⇒ Set of Objects is also one object, e.g., Networks of Networks

You can connect to a human, organization, or a department
Names, Ids, Addresses, and Keys

- Each Object has:
 - **Names**: ASCII strings for human use
 - **IDs**: Numeric string for computer use
 - **Addresses**: where the Object is located
 - Home Address, Current Address
 - **Keys**: Public, Private, Secret
 - Other attributes, Computer Power, Storage capacity

- Each object has one or more IDs, zero or more names, one or more addresses and zero or more other attributes

You connect to an ID not an address ⇒ Allows Mobility
Object names and Ids are defined within a realm

An object may be a member of multiple realms.
 ⇒ One or more Ids in each realm of which it is a member

Each realm has a set of exits. Objects with local realm Ids communicate to objects outside the realm only by simply communicating with server objects at the exit.

Realms can be treated as single object and have Names, Ids, addresses. Realms are recursive.

Boundaries: Technological, Governmental, ISP, Organizational

Realm = Organization
Hierarchy of IDs

- Universe is organized as a hierarchy of realms
- Each realm has a set of parents and a set of children
- Parent IDs can be prefixed to realm IDs
- A child may have multiple parents ⇒ Hierarchy is not a tree
- Any path to the root of a level gives the ID for the object at that level, e.g., level2_id.level1_id…object_id = level2 id of object

 Realm Hierarchy = Organizational Structure
Object Addresses

- Address of an object indicates its *physical attachment point*
- Networks are organized as a set of *zones*
- Object address in the current zone is sufficient to reach it inside that zone
- Each object registers its names, addresses, IDs, and attributes with the registry of the relevant realms
- Zones are objects and have IDs, realms, addresses too
- An object’s address at higher level zones is obtained by prefixing it with addresses of ancestor zones

Zonal Hierarchy = Network Structure
Routing

- Based on connectivity
- Routing organized as paths through several levels of hierarchy
- At each level packets follow an optimal path from the entry point to that level to exit point in that zone
- Routing table exchanges at each level are used to find the optimal paths at that level

Connectivity Graph

Highly scalable hierarchical routing
Server Objects

- Each realm has a set of server objects, e.g., forwarding, authentication, encryption,
- Some objects have built-in servers, e.g., an “enterprise router” may have forwarding, encryption, authentication services.
- Other objects rely on the servers in their realm
- Forwarding servers are located at the boundary of two realms
- Encryption servers encrypt the packets
- Authentication servers (AS) add their signatures to packets and verify signatures of received packets.
- Storage servers store packets while the object may be sleeping and may optionally aggregate/compress/transform/disseminate data. Could wake up objects.
- Persistent connections: Across system restarts, HW replacement, Object mobility

Servers allow simple energy efficient end devices
Packet Headers

- You have to know the name of the destination to be able to communicate with it.
- The destination name has to be up to the level where you have a common ancestor.
- The names can be translated to the ID of the destination by using registries at appropriate levels.
- The packets contain either IDs or addresses of the destination.
- Current level IDs are translated to address.

Packets contain IDs ⇒ Network handles mobility
Packet and Circuit Switching

- Packets are good for sharing. Circuits are good for isolation.
- Critical applications need isolation ⇒ Use separate networks.
- When Internet 1.0 was designed, the circuit was the competition.
- Latest wireless networks, e.g., WiMAX offers both circuits and packets
- GINA offers both packet and circuit switching with intermediate granularities of multigrams and streams.

Packets, multigrams, flows, streams ⇒ Multiple levels of isolation
Control and Data Plane Separation

- Streams use control channel and data channel that may have separate paths.
- Data plane can be packets, wavelengths, power grids, …

Separate planes ⇒ Generalized switching and Security
Security

- Multi-level architecture. Gatekeepers on the entrance
- Authentication checked on entry to zone/realm. Not at every router.
- Authentication at multiple levels: country, city, home.
- Group Authentication: n-packets can be authenticated by one authentication
- VPN and firewalls are part of the architecture

Organizational control of security
Gatekeepers

- Gatekeepers also enforce policies and do policing (Monitor bandwidth, type of traffic, contents)
- May provide storage for a limited time (Helps sleeping entities save energy)
- Add authentication headers (country, city, home, level)
- End systems can delegate the “TCP” responsibility on gatekeepers
- All services do not have to have reside in each gatekeeper.
- Gatekeepers may also delegate services to other servers
- Application-specific gatekeepers

Organizational control of all policies
<table>
<thead>
<tr>
<th>Feature</th>
<th>Internet 1.0</th>
<th>Internet 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energy Efficiency</td>
<td>Always-on</td>
<td>Green ⇒ Mostly Off</td>
</tr>
<tr>
<td>2. Mobility</td>
<td>Mostly stationary computers</td>
<td>Mostly mobile objects</td>
</tr>
<tr>
<td>3. Computer-Human</td>
<td>Multi-user systems</td>
<td>Multi-systems user</td>
</tr>
<tr>
<td>Relationship</td>
<td>⇒ Machine to machine comm.</td>
<td>⇒ Personal comm. systems</td>
</tr>
<tr>
<td>4. End Systems</td>
<td>Single computers</td>
<td>Globally distributed systems</td>
</tr>
<tr>
<td>5. Protocol Symmetry</td>
<td>Communication between equals</td>
<td>Unequal: PDA vs. Google</td>
</tr>
<tr>
<td></td>
<td>⇒ Symmetric</td>
<td>⇒ Asymmetric</td>
</tr>
<tr>
<td>6. Design Goal</td>
<td>Research ⇒ Trusted Systems</td>
<td>Commerce ⇒ No Trust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Map to organizational structure</td>
</tr>
<tr>
<td>7. Ownership</td>
<td>No concept of ownership</td>
<td>Hierarchy of ownerships, administrations, communities</td>
</tr>
<tr>
<td>8. Sharing</td>
<td>Sharing ⇒ Interference, QoS Issues</td>
<td>Sharing and Isolation ⇒ Critical infrastructure</td>
</tr>
<tr>
<td>10. Applications</td>
<td>Email and Telnet</td>
<td>Information Retrieval, Distributed Computing, Distributed Storage, Data diffusion</td>
</tr>
</tbody>
</table>
Summary

1. Internet 3.0 is the next generation of Internet.
2. It must be green (energy efficient), secure, allow mobility.
3. Must be designed for commerce.
4. Active industry involvement in the design essential. Leading networking companies must actively participate.
5. Our proposal Generalized InterNet Architecture (GINA) addresses many issues.
Thank You!