Blockchains: The Distributed Trust Technology

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@wustl.edu

Keynote at The 2017 International Conference on Computer, Information and Telecommunication Systems (CITS 2017), Dalian, China, July 21, 2017

Audio/Video recordings of this talk are available at:
http://www.cse.wustl.edu/~jain/talks/cits17.htm
Overview

1. Trend: Centralized to Decentralized
2. Importance of Blockchain
3. Technical Innovations of Bitcoin
4. Blockchain Applications to Networking
Example of a Contract: Wedding
Wedding (Cont)

- Centralized
 - Centralized registry
 - Single point of failure
 - Easier to hacked

- Decentralized
 - Decentralized
 - No single point of failure
 - Very difficult to hack

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/cits17.htm

©2017 Raj Jain
Blockchains

- **What** it allows:
 - Two complete strangers can complete a transaction without a third party
 - 1st Generation: Transaction = Money transaction
 - 2nd Generation: Transaction = Shares of
 - 3rd Generation: Smart Contracts, Agreements, Property, …
 - Revolutionizing and changing the way we do banking, manufacturing, education, computer networking, …

- **How** is it done?
 - A singly linked chain of blocks of verified signed transactions is replicated globally on millions of nodes
 - You will have to change millions of nodes to attack/change

- **Who** is interested: Banks, Hospitals, Venture Capitalists, …
 ⇒ Researchers, students, …
Blockchain Properties

- Achieves **decentralized** “consensus”
- No single trusted party required
- No single point of failure
- Cryptographically secure
- Hacker proof
Examples of Centralized Systems

- **Banks**: Allow money transfer between two accounts
- **Currency**: Printed and controlled by the government
- **Stocks**: Need brokers and clearing house (NY stock exchange, Bombay Stock Exchange, …)
- **Networks**: Certificate Authorities, Domain Name Service

In all cases:
1. There is a central third party to be trusted
2. Central party maintains a large database of information
 ⇒ Attracts Hackers
3. Central party may be hacked
 ⇒ affects millions
4. Central party is a single point of failure.
 Can malfunction or be bribed.
Trend: Centralized to Decentralized

- **Trend**: Make everything decentralized with no central point of control
- You can send money to your friends in Russia, China without their governments knowing it
- You can make a wedding contract, Property contract
- Decentralized systems are
 1. More reliable: Fault tolerant
 2. More secure: Attack tolerant
 3. No single bottleneck ⇒ Fast
 4. No single point of control ⇒ No monopoly ⇒ Cheaper
- Libertarians decided to build a totally decentralized system with no central authority. Blockchain is one way to do this.
Fifth Disruptive Computing Paradigm

1. **Mainframes**: IBM

2. **Personal computers**: Microsoft

3. **Internet**: Netscape, …, Google

4. **Mobile and social networking**: Apple, Facebook

5. **Blockchains**: Decentralized money exchange, micro financing, contracts, machine economy (IoT payments)
Google Trend: Blockchains

Countries with most interest in Blockchains:

1. Ghana 100
2. Nigeria 68
3. Singapore 25
4. Hong Kong 22
5. South Africa 20
Gartner's Hype Cycle of Emerging Tech 2016

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/cits17.htm

©2017 Raj Jain
Blockchain Origin: Bitcoin

- Blockchain is the technology that made Bitcoin secure
- Blockchain was invented by the inventor of Bitcoin
- After Bitcoin became successful, people started looking into the technology behind Bitcoin and found:
 - Blockchain is the key for its success
 - Blockchains can be leveraged for other applications
Bitcoin

- First Successful Virtual Currency
- Has survived 9 years and has become legal in several jurisdiction
- Decentralized: No one company or government controls it
 - Decentralized Transaction Verification
 - Decentralized Ledger (accounting book)
 - Decentralized Mint to make new coins
 - Decentralized peer-to-peer network
- Pseudo-Anonymous: User ID = Hash of public key
- Has been designed to control over-minting, double-spending, counterfeiting
- 1 BTC = 2340.15 USD (July 20, 2017) was 620.04 USD (Sep 9, 2016). 10^{-8} BTC = 1 Satoshi = 0.0012 cents
- 16,458,550 BTC (July 20, 2017)
- Total 21 Million BTC will ever be generated.

Ref: https://coinmarketcap.com/
http://www.cse.wustl.edu/~jain/talks/cits17.htm

©2017 Raj Jain
30,000+ Vendors Accept Bitcoins

- Dell
- Newegg.com
- TigerDirect
- Apple’s App Store
- Sears
- K-Mart
- Square
- Subway

- Safer than using credit cards

Ref: https://99Bitcoins.com/who-accepts-Bitcoins-payment-companies-stores-take-Bitcoins/
Bitcoin History

- Satoshi Nakamoto published a *whitepaper* in 2008. How to do direct transfer of money without involving a 3rd party.
- He also published complete reference code to transact, store, and mint Bitcoins. Made the software open source.
- He supported the software and answered all questions for 3 years and then disappeared (may be because he was *rich or fearful*).
- P2P Network:
 - Nodes come up and leave at random
 - Packets are delayed, lost, duplicated
 - Some nodes are malicious
- As long as a majority of CPU power is not with attackers, the system works ⇒ Proof of Work

Bitcoin Wallet

- Program to manage your incoming/outgoing Bitcoins
- Allows generating new addresses and public/private key pairs
- Keep track of holdings of your different addresses
- Similar to Apple Wallet, Google Wallet, …
- Numerous apps on Apple’s App store or Google Play Store

Coinbase Blockchain Bitcoin Free Bitcoin Billionaire BitWallet Airbitz
Transaction

- Bob gives 1 BTC to Alice

I (Bob) give 1 BTC to Alice

- Hash of previous transaction of this coin
- Bob’s Public Key
- Address of Alice

Bob signs with his **private key**

Signed Transaction and Bob’s public key
Ledger

- **Solution to Double Spending**

<table>
<thead>
<tr>
<th>From</th>
<th>Amount</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>1 USD</td>
<td>Alice</td>
</tr>
<tr>
<td>Cash</td>
<td>2 USD</td>
<td>Grocery</td>
</tr>
<tr>
<td>Electronics</td>
<td>5 USD</td>
<td>Cash</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Bob’s Account**
 - Balance = Balance - 1

- **Alice’s Account**
 - Balance = Balance + 1

- Maintained by a bank or in a personal computer
- Problem: It can be hacked.
Decentralized Ledger

- **Copy 1**
 - From: Bob
 - Amount: 1 USD
 - To: Alice
 - Bob’s Account: Balance = Balance - 1
 - Alice’s Account: Balance = Balance + 1

- **Copy 2**
 - From: Bob
 - Amount: 1 USD
 - To: Alice

- **Copy n**

 Cannot be hacked unless 51% copies are hacked.
Blocks

- **Transaction Chain:**

```
Transaction ← Transaction ← Transaction ← Transaction
```

- **Problem:**
 - Too many transactions ⇒ Chain too long
 - Takes too long to find and verify a transaction

- **Solution:** Combine several transactions into blocks of verified transactions

```
Block 0
```

```
Block n-1
```

```
Block n
```

Transaction Chain:
```
Transaction
```

Time Stamp

©2017 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/cits17.htm
Blockchains

- Block maker (Miners) ensures that all transactions in the block are valid
- Miners have significant computing power
- Miner with the highest computer power wins. His/her block is added to the end of the chain
- Miner is rewarded. He/She is allowed to mint a few new coins and keep them
- Proof of computing power \Rightarrow Proof of work \Rightarrow Solve a puzzle
- Chain with the highest cumulative difficulty is selected as the main chain
Proof-of-Work

- When someone requests a service, ask them to do something that is difficult for the requester but easy to verify for the server. Captcha is one example.
- Bitcoin requires a proof that you can compute faster than others.
- A puzzle is given and the node that solves it first wins.
- Puzzle is such that it can be solved in ~ 10 minutes.
 - ⇒ Puzzles are being made harder as the computing power is increasing with Moore’s Law.
Puzzle

- Find a nonce that will make the hash of the block header less than a specified target
- Lower target \Rightarrow More difficult to find
- Puzzle can be made harder/easier by specifying a higher or lower target
- Target is adjusted by all miners every 2 weeks (2016 blocks) so that it takes 10 minutes to solve the puzzle.
Smart Property

- Bob: I give $100 to Alice if IBM stock goes below $5
 - Locking script: if IBM stock < $5 Return True
 - Unlocking script: IBM stock price is $4
- Property exchange happens if certain conditions are satisfied. Conditions can be checked automatically ⇒ Allows trustless exchanges
- Smart Contracts: Not just buy/Sell. Any agreement.
Potential Blockchain Applications

- **Financial**: Currency, Private equities, Public equities, Bonds, Derivatives, Commodities, Mortgage records, Crowd-funding, Micro-finance, Micro-charity

- **Public Records**: Land titles, Vehicle registries, Business license, Criminal records, Passports, Birth certificates, Death certificates, Building permits, Gun permits

- **Private Records**: Contracts, Signatures, Wills, Trusts, Escrows

- **Other Semi-Public Records**: Degree, Certifications, Grades, HR records, Medical records, Accounting records

- **Physical Asset Keys**: Apartment keys, Vacation home keys, Hotel room keys, Car keys, Rental car keys, Locker keys

- **Intangibles**: Patents, Copyrights, Trademarks

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/cits17.htm
Networking Applications

- **NameCoin**: A decentralized key-value registration and transfer platform using blockchains.
 - A decentralized **Domain Names Registry**
 - To eventually replace *Internet Corporation for Assigned Names and Numbers* (*ICANN*)
 - .bit domain names
 - Includes its own currency to pay for registration
- **DARPA** issued a **RFP** for Secure Decentralized Messaging using Blockchains
- **InterPlanetary File System** (*IPFS*): Decentralized secure file serving
- **Storj**: Decentralized secure cloud storage using blockchains
- **OneName**: Digital identity. Authentication using Wallet
Public Key Infrastructure

- Certificate Authorities issue certificates
 - Single Point of Failure
 - CA Keys are often compromised
 (Diginotar – Dutch certificate authority was compromised in 2011)
- Web of Trust: Anyone can issue a certificate
- Blockchain solution: Store user ID and public key
 - Blockstack
 - Certcoin
Data Provenance

- Keeping track of origin and history of movement of data among the databases or documents
- Traditional solution: Logging and auditing
- In a distributed cloud environment, centralized logging is required and is difficult
- Blockchains can be used to log the changes
 - Miners verify the changes
 - ProvChain
 - SMARTDATA
- Also used in supply chains
Data Privacy

- Facebook and Google have massive amounts of personal information
- Who can access this information?
- Can someone do statistics on the database without having rights to personal information of all?
- Can the user hide its identity?
- Traditional Method: Access Control Lists (ACL) managed centrally (by Facebook and Google)
- Blockchains can be used to keep ACL and data stored in a distributed manner with no central control
Data Integrity

- Data has not been corrupted
- Traditional techniques: Digital Signatures and PKI, Replication
- In blockchains, data can not be tempered once committed to a block.
- Ericson provides a blockchain based integrity assurance service
Blockchain Challenges

- **Selfish mining**: Some one creating a large number of bad blocks keeping the miners busy with discards
- **Sybil Attacks**: Some one creating a large number of transactions denying service to legitimate users
- **51% Attack**: One entity owns the majority of miners
- Communication overhead
- Solving the puzzles for “Proof of Work” wastes computing resources
Alternatives to “Proof of Work”

- **Proof of Space**: Computation is replaced by storage
- **Measure of Trust**: Most trustworthy miner wins
- **Minimum Block Hash**: (rather than fastest) miner wins ⇒ More random
- **Proof of Importance**
- **Proof of Stake**
Blockchain Implementations

- **Open Source Implementations:**
 - Bitcoin
 - Etherum
 - Hyper Ledger

- **Commercial Implementations:** Block Chain as a Service from
 - IBM
 - Microsoft Azure
 - SAP
 - Deloitte
Summary

1. Current trend is to make everything decentralized
2. Bitcoin is a decentralized currency.
3. Blockchain 1.0 is used to global consensus on Bitcoin transactions.
4. Blockchain 3.0 allow sophisticated contracts making it useful for many network and security applications
5. Opportunity for startups, venture capitalists, and researchers
Further Reading

Online Resources

- Bitcoin magazine, https://bitcoinmagazine.com/
- CoinTelegraph, https://cointelegraph.com/
- Let’s talk Bitcoin, https://letstalkbitcoin.com/
- Epicenter - Weekly Podcast on Blockchain, Ethereum, Bitcoin and ..., https://epicenter.tv/
- Epicenter Bitcoin, https://epicenter.tv/
- Ethercasts, https://www.youtube.com/user/EtherCasts
Acronyms

- API: Application Programming Interface
- BTC: Bitcoin
- CCN: Crypto Coin News
- DARPA: Defense Advanced Research Project Agency
- HR: Human Resources
- ICANN: Internet Committee for Assigned Names and Numbers
- ID: Identifier
- IoT: Internet of Things
- IPFS: Internet Protocol File System
- ISP: Internet Service Provider
- QR: Quick Response Code
- RFP: Request for Proposal
- RIPEMD: RACE Integrity Primitives Evaluation Message Digest
- SHA: Secure Hash Algorithm
- USD: United States Dollar
- VC: Venture Capital
Scan This to Download These Slides

Thank You

Raj Jain
http://rajjain.com

http://www.cse.wustl.edu/~jain/talks/cits17.htm

©2017 Raj Jain