Current Trends in Internet Evolution and a Framework for Application Delivery

Project Leader: Subharthi Paul
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Indo US Collaboration for Engineering Education (IUCEE) Virtual Academy Webinar, October 17, 2012

These slides and audio/video recordings are available at:
 http://www.cse.wustl.edu/~jain/talks/adn_iuc.htm

©2012 Raj Jain
Overview

1. Networking Application Trends
2. OpenFlow and SDN
3. OpenADN Vision and Extensions
4. Key Features
2012: Where are we now?

- At the knee of Mobile Internet age (paradigm shift)
 - Computing (IBM 360) ⇒ Mini-computing (PDP11)
 ⇒ Personal Computing (Desktop, PC+MAC) ⇒ Laptops
 ⇒ Netbooks ⇒ Smart Phones + Tablets
 Shift started on June 29, 2007 when iPhone was released.

- Most valued companies in the stock market are generally those that lead the paradigm shift
 - Automotive (General Motors) ⇒ Electrical (GE, Edison Electric) ⇒ Networking (Cisco + 3Com in 80’s) ⇒ Internet (Netscape + Yahoo in 90’s) ⇒ Mobile Internet (Apple + MS + Google, 2010’s)

- Note: Apple ≠ PC (MAC) company (mobile device company)
 - Google ≠ search engine (mobile device company)
- Also Social Networking (Facebook), Internet Retail (Amazon)

http://www.cse.wustl.edu/~jain/talks/adn_iuc.htm ©2012 Raj Jain
Trend: Explosion of Mobile Apps and Clouds

- All top 50 Internet sites are services [Alexa]
- Almost all services are now mobile apps: Google, Facebook, Bank of America, …
- Almost all services need to be global (World is flat)
- Almost all services use cloud computing (Easy management)

Networks need to support efficient service setup and delivery

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_iuc.htm
©2012 Raj Jain
Service Center Evolution

1. Single Server

2. Data Center

Load Balancers SSL Off loaders

3. Global Clouds

Global Internet

Need to make the global Internet look like a data center
- OpenADN appliances are like Google appliances in Tier 3 ISPs
- Details of Google WAN are not public
- ISPs can not use it: L7 proxies require app msg reassembly
Our Solution: OpenADN

- Open Application Delivery Networking Platform
 Platform = OpenADN aware clients, servers, switches, and middle-boxes

- Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing
OpenADN Innovations

1. Cross-Layer Communication
2. MPLS like Labels
3. Extended OpenFlow flow-based handling, centralized policy control
4. Software Defined Networking: Standardized abstractions, Multi-Tenants, Control Plane programming for data plane
5. ID/Locator Split
6. Layer 7 Proxies without layer 7 visibility
Step 1: Separation of Control and Data Planes

- Control = Prepare forwarding table
- Data Plane: Forward using the table
- Forwarding table is prepared by a central controller
- Protocol between the controller and the forwarding element: OpenFlow
- Centralized control of policies
- Switches are simple. Controller can be complex. Can use powerful CPUs
- Lots of cheap switches = Good for large datacenters

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_iuc.htm
Centralized vs. Distributed

- Fully centralized is not scalable.
- Fully distributed is not manageable.
 ⇒ Hierarchy
Step 2: Multi-Tenants Clouds

- Problem: Multiple tenants in the datacenter
- Solution: Use multiple controllers. Each tenant can enforce its policies

- Significant industry interest ⇒ Open Networking Foundation, https://www.opennetworking.org/

Diagram:
- Controller 1
- Controller 2
- Flow Table 1
- Flow Table 2
- Other traffic
Step 3: Standardized Abstractions

- The routers are expensive because there is no standard implementation.
- Every vendor has its own hardware, operating/management system, and proprietary protocol implementations.
- Similar to Mainframe era computers. No cross platform operating systems (e.g., Windows) or cross platform applications (java programs).

<table>
<thead>
<tr>
<th>OSPF</th>
<th>BGP</th>
<th>DHCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Operating System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proprietary fast forwarding hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco IOS
Juniper JUNOS
Example: PC Paradigm Shift

- Computing became cheaper because of clear division of hardware, operating system, and application boundaries with well defined APIs between them.
- Virtualization \Rightarrow simple management + multi-tenant isolation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OS360 Operating System</td>
<td>IBM 360 HW, Storage, ...</td>
<td></td>
<td>MSOffice</td>
<td>OpenOffice</td>
</tr>
<tr>
<td>DOS</td>
<td>Windows</td>
<td>LINUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel</td>
<td>AMD</td>
<td>ARM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VM1</td>
<td>VM2</td>
<td>VM3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypervisor</td>
<td>Physical HW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Defined Networking

- Layered abstractions with standardized APIs

Enterprise 1
Multicasting
Network OS1

Enterprise 2
Mobility
Network OS2

Enterprise 3
App1
App2
Network OS3

Applications
Network OS
Virtualization

Forwarding HW

Network Virtualization

Forwarding

http://www.cse.wustl.edu/~jain/talks/adn_iuc.htm
©2012 Raj Jain
SDN Architecture Component Examples

- oftrace
- openseer
- oflops
- ofmonitor

- Multicasting
- Mobility

- NOX
- Beacon
- Maestro
- Floodlight
- Helios

- FlowVisor

- OpenFlow

- HP
- NEC
- Ciena
- Juniper
- Pronto
- Netgear
- Open-VSwitch

Monitoring/Debugging
Control
Applications
Network OS/Controller
Virtualization/Slicing
Forwarding

Ref: https://courses.soe.ucsc.edu/courses/cmpe259/Fall11/01/pages/lectures/srini-sdn.pdf
http://www.cse.wustl.edu/~jain/talks/adn_iuc.htm
©2012 Raj Jain
SDN Impact

- Why so much industry interest?
 - Commodity hardware
 ⇒ Lots of cheap forwarding engines ⇒ Low cost
 - Programmability ⇒ Customization
 - Sharing with Isolation ⇒ Networking utility
 - Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly

- Opens up ways for new innovations
 - Dynamic topology control: Turn switches on/off depending upon the load and traffic locality
 ⇒ “Energy proportional networking”
Life Cycles of Technologies

Potential

SDN
MPLS

Research Hype Dis
illusionment Success or
Failure

Time
Industry Growth: Formula for Success

- **Paradigm Shifts**: Leadership Shift
- **Old market leaders** stick to old paradigm and loose
- **Mini Computers** → **PC, Phone** → **Smart Phone, PC** → **Smart Phone**

Number of Companies

- **Innovators** → **Startups** → **Technology Differentiation**

Big Companies

- Manufacturing
 - **⇒ Price differentiation**

Time

- **New Entrants**
- **Consolidation**
- **Stable Growth**
OpenADN in SDN’s Layered Abstraction

SDN provides standardized mechanisms for distribution of control information

http://www.cse.wustl.edu/~jain/talks/adn_iuc.htm

©2012 Raj Jain
OpenADN Features

Message level:
- Server selection
- Load balancing between servers
- Fault tolerance
- Server mobility
- User Mobility
- Secure L5-L7 headers and data
- Middlebox services: Intrusion detection, Content based routers, application firewalls, …
 - Control plane and data plane MBs
- Middlebox traversal sequence
- Message level policies
- TCP Splicing
Networking: Failures vs Successes

- 1986: MAP/TOP (vs Ethernet)
- 1988: OSI (vs TCP/IP)
- 1991: DQDB
- 1994: CMIP (vs SNMP)
- 1995: FDDI (vs Ethernet)
- 1996: 100BASE-VG or AnyLan (vs Ethernet)
- 1997: ATM to Desktop (vs Ethernet)
- 1998: ATM Switches (vs IP routers)
- 1998: MPOA (vs MPLS)
- 1999: Token Rings (vs Ethernet)
- 2003: HomeRF (vs WiFi)
- 2007: Resilient Packet Ring (vs Carrier Ethernet)
- IntServ, DiffServ, …

Technology alone does not mean success.
Key Features of OpenADN

1. Edge devices only. Core network can be current TCP/IP based, OpenFlow or future SDN based
2. Coexistence (Backward compatibility): Old on New. New on Old
3. Incremental Deployment
4. Economic Incentive for first adopters
5. Resource owners (ISPs) keep complete control over their resources

Most versions of Ethernet followed these principles. Many versions of IP did not.
Resource Control

- ASPs keep complete control of their data. ISP does not have to look at the application headers or data to enforce application level policies.
- ISPs keep complete control of their equipment. ASPs communicate their policies to ISP’s control plane.
- Middle boxes can be located anywhere on the global Internet (Of course, performance is best when they are close by).
- ISPs own OpenADN switches and offer them as a service.
- ASPs or ISPs can own OpenADN middle boxes.
- No changes to the core Internet.
Beneficiaries of This Technology

- Equipment/Software vendors: OpenADN-aware appliances
- ASPs: Deploy servers anywhere and move them anytime
- ISPs: Offer new application delivery/middlebox services
- Cloud Service Providers (CSPs): Freedom to move VMs, Less impact of downtime
- CDNs, e.g., Akamai, can extend into application delivery
The Narrow Waist

Applications
 Transports
 IP
 Link
 Phys

Applications
 Transports
 HTTP
 IP
 Link/Phys

Applications
 Transports
 Content
 IP
 Link/Phys

Applications
 Transports
 Application Delivery
 IP
 Link/Phys
Summary

1. Knee of mobile internet paradigm shift
 Explosion of Apps using cloud services
2. OpenADN appliances can provide ASPs networking services they need
3. OpenADN extends using best of OpenFlow, SDN, MPLS, ID/Locator Split, Cross-layer communications, middle box appliances
4. Keeps resource control under resource owners. Can be implemented incrementally now
5. Trend is towards simplifying and standardizing router interfaces ⇒ Software defined networking

Application Delivery: Opportunity for ISP’s