OpenADN: A Case for Open Application Delivery Networking

Subharthi Paul, Raj Jain, Jianli Pan
Washington University in Saint Louis
{Pauls, jain, jp10}@cse.wustl.edu

Jay Iyer, Dave Oran
Cisco Systems
{jiyer,oran}@cisco.com

International Conference on Computer Communications and Networking (ICCCN 2013)
Nassau, Bahamas, July 30-August 2, 2013

These slides and audio/video recordings are available at:
http://www.cse.wustl.edu/~jain/talks/ad_ic3np.htm

http://www.cse.wustl.edu/~jain/talks/ad_ic3np.htm
Overview

1. Application Delivery in a Data Center
2. Application Delivery in a Multi-Cloud Environment
3. Our Solution: OpenADN
4. OpenADN Design Issues
5. OpenADN Design
Clouds and Mobile Apps

- June 29, 2007: Apple announced iPhone ⇒ Birth of Mobile Internet, Mobile Apps
 - Almost all services are now mobile apps: Google, Facebook, Bank of America, …
 - Almost all services need to be global (World is flat)
 - Almost all services use cloud computing

Networks need to support efficient service setup and delivery
Service Center Evolution

1. Single Server

2. Data Center

Load Balancers
SSL Off loaders
Application Replication, Partitioning

3. Multi-Cloud

Global Internet

Need to make the global Internet look like a data center
Application Delivery in a Data Center

- Replication: Performance and Fault Tolerance
 - If Load on S1 > 0.5, send to S2
 - If link to US broken, send to UK

- Content-Based Partitioning:
 - Video messages to Server S1
 - Accounting to Server S2

- Context Based Partitioning:
 - Application Context: Different API calls
 - Reads to S1, Writes to S2
 - User Context:
 - If Windows Phone user, send to S1
 - If laptop user, send to HD, send to S2

- Multi-Segment: User-ISP Proxy-Load Balancer-Firewall-Server
Application Deployment Environment

- Application logic in servers
- Security (firewall, intrusion detection, SSL offload) in middle boxes
- Performance optimization (WAN optimizers, content caches) middleboxes
- Application-level policy routing (APR): Partitioning and replication middleboxes
Middlebox Deployment

- Number of middleboxes (Application Delivery Controllers) is comparable to the number of routers

<table>
<thead>
<tr>
<th>Appliance Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewalls</td>
<td>166</td>
</tr>
<tr>
<td>NIDS</td>
<td>127</td>
</tr>
<tr>
<td>Conferencing/Media Gateways</td>
<td>110</td>
</tr>
<tr>
<td>Load Balancers</td>
<td>67</td>
</tr>
<tr>
<td>Proxy Caches</td>
<td>66</td>
</tr>
<tr>
<td>VPN devices</td>
<td>45</td>
</tr>
<tr>
<td>WAN optimizers</td>
<td>44</td>
</tr>
<tr>
<td>Voice Gateways</td>
<td>11</td>
</tr>
<tr>
<td>Middleboxes total</td>
<td>636</td>
</tr>
<tr>
<td>Routers</td>
<td>~900</td>
</tr>
</tbody>
</table>

- Market size of optimization ADCs will grow from 1.5B in 2009 to $2.24B in 2013 [17]

- Security appliances will grow from $1.5B in 2010 to $10B in 2016 [13]

http://www.cse.wustl.edu/~jain-talks/ad_ic3np.htm
Under usage spikes and failures, some of the application servers are replicated in cloud. Traffic is bounced through middleboxes in enterprise data centers.
Independent Cloud Deployment

- Virtual appliances are used
- Non-standard techniques (e.g., changing link weights) used to route traffic in datacenters are not available in clouds since networks are not visible to ASPs.
Multi-Cloud Deployments

- Need a globally distributed front-end service is required for application partitioning

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/ad_ic3np.htm

©2013 Raj Jain
Google WAN

- Google appliances in Tier 3 ISPs
- Details of Google WAN are not public
- ISPs can not use it: L7 proxies require data visibility

Google Data Center #1
Google Data Center #2

Google L7 Proxy
Network POP

Access ISP

Access ISP

Google WAN
Our Solution: OpenADN

- Open Application Delivery Networking Platform
 Platform = OpenADN aware clients, servers, switches, and middle-boxes

- Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing ⇒ Global datacenter
Design Issues

1. Who will implement? ASP or ISP?
 - Neither Application nor networking ⇒ Middle
 - Application specific but need performance similar to networking
 - ASPs can extend applications or ISPs can provide application specific routing by providing programmability

2. Middleboxes are deployed in a chain
 - User to SSL offloader to IDS to Firewall to Content based router to load balancer to Application Server
 - Multiple TCP Segments
Design Issues (Cont)

3. Each TCP segment ends in a “Waypoint”
 - Waypoint = middlebox or server
4. A connection from one waypoint instance to the next waypoint instance is called a “stream”
5. Switching context: Application partitioning based on content, application context, networking context, or user context
 - Need to put meta-tags in the header that help waypoints correctly route the packets
6. Sender and Receiver Policies: Receivers may be services.
Design Issues (Cont)

7. Data Privacy: Need a way for ISPs to implement this without looking at the data
8. Dynamic Application Deployment State: ISPs need to know where and how many waypoints are up
Design Approach

1. Application Delivery Networking (ADN) layer between the networking and higher layers
2. The packets require classification and routing based on content
3. Classification is done in ASP trusted entity since it needs access to data and encoded in a meta-tag
Layer 3.5: Application Label Switching (APLS)
Hop-by-hop transport between waypoints in a segment

Layer 4.5: Segment Switching Layer (SSL)
Between application segments
OpenADN Labels (Cont)

- Layer 4.5 Label: Stack of meta-tags – one for each segment. At the egress of a segment, a meta-tag is popped and used during the next segment.

- Layer 3.5 Label:
 - `<Segment ID, Stream ID>`: Specific instance of an application segment
 - Waypoint ID: Previous or next Waypoint (as indicated by Flag bits)
 - Handoff Locator: Middlebox copies this to the destination IP address. Helps switch the packet to the next OpenADN switch.
Each packet has two labels: Sender Label, Receiver Label
Sender label is popped at egress of sender domain and packet is sent to the ingress of the receiver domain
OpenADN in SDN’s Layered Abstractions

- SDN provides standardized mechanisms for distribution of control information
- OpenADN aware devices use enhanced OpenFlow

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/ad_ic3np.htm ©2013 Raj Jain
Key Features of OpenADN

1. Edge devices only. Core network can be current TCP/IP based, OpenFlow or future SDN based
2. Coexistence (Backward compatibility): Old on New. New on Old
3. Incremental Deployment
4. Economic Incentive for first adopters
5. Resource owners (ISPs) keep complete control over their resources
1. Application delivery requires multiple segments between numerous middleboxes that are handled in an ad-hoc manner in datacenters

2. Distributing applications over a multi-cloud environment requires collaboration between ASPs and ISPs

3. OpenADN provides allows ISPs to provide application delivery and partitioning services without looking at the application data

4. Both ASPs and ISPs keep complete control over their resources by co-ordinating in the control plane using SDN.