High Definition Video Streams Analysis, Modeling and Prediction by Abdel Karim Al Tamimi, Raj Jain, and Chakchai So-In, Advances in Multimedia, vol. 2012, Article ID 539396, 13 pages, 2012. doi:10.1155/2012/539396


High definition video streams' unique statistical characteristics and their high bandwidth requirements are considered to be a challenge in both network scheduling and resource allocation fields. In this paper, we introduce an innovative way to model and predict high-definition (HD) video traces encoded with H.264/AVC encoding standard. Our results are based on our compilation of over 50 HD video traces. We show that our model: simplified seasonal ARIMA (SAM) provides an accurate representation for HD videos, and it provides significant improvements in prediction accuracy. Such accuracy is vital to provide better dynamic resource allocation for video traffic. In addition, we provide a statistical analysis of HD videos, including both factor and cluster analysis to support a better understanding of video stream workload characteristics and their impact on network traffic. We discuss our methodology to collect and encode our collection of HD video traces. Our video collection, results and tools are available for the research community.

Complete paper in Adobe Acrobat format.

Back to the List of Papers
Back to Raj Jain's home page