Congestion Notification for Data Center Ethernet Networks: Key Principles

Raj Jain, Jinjing Jiang, Chakchai So-In
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu
IEEE 802.1au Meeting, San Francisco, July 18, 2007
These slides are also available at:
http://www.cse.wustl.edu/~jain/ieee/fecn707b.htm
Overview

1. Explicit vs Implicit Feedback
2. Rate vs Queue Load Sensor
3. Rate vs Queue Feedback
4. Data Plane vs Control Plane
5. Source Complexity
6. Network Overhead
7. Random vs Predictable Behavior
Periodically, the sources probe the network for best available rate using “Rate Discovery packet”

- The probe contain only rate, Rate limiting Q ID
- The sender initializes the probes with rate=-1 (⇒∞)
- Each switch computes an “advertised rate” based on its load
- The switches adjust the rate in probe packets down if necessary
- The receiver reflects the RD packets back to the source
- Source send at the rate received
Essential Components of Control

<table>
<thead>
<tr>
<th></th>
<th>BCN</th>
<th>FECN</th>
<th>E2CM</th>
<th>QCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>Rate</td>
<td>Rate</td>
<td>Rate</td>
<td>Rate</td>
</tr>
<tr>
<td>Regulator</td>
<td>Rate</td>
<td>Rate</td>
<td>Rate</td>
<td>Rate</td>
</tr>
<tr>
<td>Load sensor</td>
<td>Queue</td>
<td>Rate</td>
<td>Queue</td>
<td>Queue</td>
</tr>
<tr>
<td>Feedback</td>
<td>Queue</td>
<td>Rate</td>
<td>Queue</td>
<td>Queue</td>
</tr>
</tbody>
</table>
Explicit vs Implicit Feedback

1. Explicit is better than implicit
2. All schemes have explicit negative feedback
3. BCN has sampled positive explicit feedback.
 => Increase probability decreases for lower rate sources => Main cause of unfairness
4. QCN-2P has no positive feedback.
 => Increase is by trial (implicit)
 => Slow transient as shown by Davide’s simulations
5. QCN-3P has one-bit positive feedback but it is ignored 96% of the time and sent back only 4% of the time
Rate vs Queue Load Sensor

1. Queue is a random quantity. For the same load, the instantaneous queue length can vary a lot. Simple M/M/1:
 \[P(Q = n) = (1 - \rho)\rho^n \]

2. Queue length depends upon the queue service architecture

3. Queue length is highly related to the bottleneck link rate. Ten 1500 byte packet at a 1 kbps link are a “big” queue while would be negligible at 10Gbps link.

4. Optimal: Mean \(Q = 1 \) (\(Q \) includes the packet in service)

5. \(Q_{eq} \) should be set differently at 1G and 100G links
Q vs Rate Load Sensor (Cont)

1. Rate based Load Sensor
 1. Utilization = Arrival rate/service rate
 2. Desired utilization is same at 1G and 100G links
2. Rate = packets serviced per unit of time
 => Stable quantity (low variance)
3. Rate is a better measure of link utilization. Managers can easily set the goal.
Rate vs Queue Feedback

- Queue length feedback from different links cannot be compared.
- Again, ten 1500 byte packets at a 1 kbps link are a “big” queue while would be negligible at a 10Gbps link.
- Rate feedback from different link speeds has exactly the same meaning. \Rightarrow When a source is told to send at 1 kbps, it does not matter whether the bottleneck is 10Gbps, or 1 Mbps, the source should send at 1 kbps.
- Queue feedback should indicate the link capacity, burstiness of traffic, queueing structure, …
 - Fb = 10 from 1 Mbps link is extremely bad news
 - Fb = 10 from 100 Gbps link is mildly bad news
 - QCN will decrease by the same amount for both of these feedbacks \Rightarrow increased transient time
Trans its Response Time

- Wrong feedback => Multiple attempts to reach goal
- Example: Correct rate = 5 Gbps, 1, 2, 3, 4, 5, …
- Time to reach the optimal increases by a few RTTs.
- Shows up as slow transient response time

Ref: au-bergamasco-ecm-qcn-benchmarks-20070717.pdf

Missed/delayed information
Data Plane vs Control Plane

1. FECN operates entirely in control plane
 There are no bits/no tags in the data packet headers

2. BCN sources add a tag for increase request to all data packets

3. QCN-3P requires header and CRC modification in the data plane
Source Complexity

1. FECN source algorithm is simple. Source Rate <- Rate in FECN probes
2. No computation. No drifts. No RTT measurements. Single feedback signal (BCN, BCN0, BCNmax, …)
3. No Time based drift, byte based increase, jitter,…
4. High cost NICs => No deployments
Network Overhead

1. 10% sampling
 => 10% extra traffic in the reverse direction
 => Significant for high speed links

2. Queue feedback includes lot of bytes
Random vs Predictable Behavior

1. Persistent Unfairness => Random performance

Ref: au-roech-simulation-results-071707.pdf
Summary

1. NIC and switch implementation complexity is important.
2. Explicit feedback is better than Implicit Feedback if done properly.
3. Rate based load sensor is more stable (less variance than) Queue-based Load Sensor.
4. Accurately interpreting queue feedback requires knowledge of link speed and queueing architecture. Otherwise increase transient time.
5. Modification to data packets or turning around tags in the switches is not desirable for very high-speed networks.
6. Network overhead during congestion is important.
7. Fairness shows up as predictable behavior.