Wireless Cellular Networks: 1G and 2G

Raj Jain
Professor of Computer Science and Engineering
Washington University in Saint Louis
Saint Louis, MO 63130

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse574-10/
Overview

- Cellular Architecture
- Advanced Mobile Phone System (AMPS)
- Cellular Digital Packet Data (CDPD)
- Wireless Cellular Generations
- GSM
- CdmaOne
Cellular Frequency Reuse

Cluster Size = 4

(a) Frequency reuse pattern for N = 4

Cluster Size = 7

(b) Frequency reuse pattern for N = 7

Cluster Size = 19

(c) Black cells indicate a frequency reuse for N = 19
Characterizing Frequency Reuse

- $D =$ minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- $R =$ radius of a cell
- $d =$ distance between centers of adjacent cells ($d = R \sqrt{3}$)
- $N =$ number of cells in repetitious pattern (Cluster)
 - Reuse factor
 - Each cell in pattern uses unique band of frequencies
- Hexagonal cell pattern, following values of N possible
 - $N = I^2 + J^2 + (I \times J), \quad I, J = 0, 1, 2, 3, \ldots$
- Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, …
- $D/R = \sqrt{3N}$
- $D/d = \sqrt{N}$

Ref: Derivation in Section 3.2 of Murthy and Manoj
Frequency Reuse Example

What would be the minimum distance between the centers of two cells with the same band of frequencies if cell radius is 1 km and the reuse factor is 12?

\[\frac{D}{R} = \sqrt{3N} \]
\[D = (3 \times 12)^{1/2} \times 1 \text{ km} \]
\[= 6 \text{ km} \]
Cellular Architecture

Mobile Station Base Station Subsystem Network Subsystem

Base Transceiver Station
Base Station Controller
Base Station Controller
Mobile services Switching Center
Equipment Identity Register
Authentication Center
PSTN

Subscriber Identity Module
Mobile Equipment
Home Location Register
Visitor Location Register
Base station controller (BSC) and Base transceiver station (BTS)

- One BTS per cell.
- One BSC can control multiple BTS.
 - Allocates radio channels among BTSs.
 - Manages call handoffs between BTSs.
 - Controls handset power levels

Mobile Switching Center (MSC) connects to PSTN and switches calls between BSCs. Provides mobile registration, location, authentication. Contains Equipment Identity Register.
Cellular Architecture (Cont)

- Home Location Register (HLR) and Visitor Location Register (VLR) provide call routing and roaming.
- VLR+HLR+MSC functions are generally in one equipment.
- Equipment Identity Register (EIR) contains a list of all valid mobiles.
- Authentication Center (AuC) stores the secret keys of all SIM cards.
- Each handset has a International Mobile Equipment Identity (IMEI) number.
Advanced Mobile Phone System (AMPS)

- First generation analog system for North America
- Two 25-MHz bands are allocated to AMPS
 - Forward (Down): BS to mobile unit (869–894 MHz)
 - Reverse (Up): Mobile to base station (824–849 MHz)
- In each market two operators are accommodated
- Each operator is allocated only 12.5 MHz in each direction
- Channels spaced 30 kHz apart ⇒ 416 channels per operator
 21 Control/paging/access, and 395 traffic channels
- Each call uses two traffic channels
 Forward = Reverse + 45 MHz
- Control channels are 10 kbps digital channels
 Traffic channels are analog using frequency modulation
Cellular Digital Packet Data (CDPD)

- Allows data to use idle cellular channels
- Data hops from one channel to next as the channels become busy or idle
- Quickly hops-off a channel grabbed by cellular system. In practice, dedicated channels.

Voice Call

Idle Channel

Data packets
Wireless Generations

- **1G: Analog** Cellular Phones. Needs a modem. 9.6 kbps max.
- **2G: Digital** Cellular Phones. No modem required. 19.3 kbps max. GSM, CDMA => Clear voice, Encryption
- **2.5G: GPRS.** 144kbps. Data only.
- **3G: Future high-speed data** with Voice. 64 kbps to 2 Mbps
- **4G: IP based**

<table>
<thead>
<tr>
<th>1G: Analog</th>
<th>2G: Digital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice</td>
<td>Voice + Low Speed Data</td>
</tr>
<tr>
<td>FDMA</td>
<td>TDMA</td>
</tr>
<tr>
<td>AMPS</td>
<td>IS-54 D-AMPS</td>
</tr>
<tr>
<td>TACS</td>
<td>IS-136 US TDMA</td>
</tr>
<tr>
<td>(U.S.)</td>
<td>DCS1800</td>
</tr>
<tr>
<td>IS-54 has analog control channel for compatibility with AMPS. Did not succeed.</td>
<td>DCS1900</td>
</tr>
<tr>
<td></td>
<td>NA GSM</td>
</tr>
</tbody>
</table>
Wireless Generations (Cont)

- Acronyms:
 - Advanced Mobile Phone System (AMPS)
 - Total Access Communication System (TACS)
 - Interim Standard (IS) from Electronic Industry Association (EIA)/Telecommunications Industry Association (TIA)
 - Digital Advanced Mobile Phone System (D-AMPS)
 - Global system for mobile communication (GSM)
 - Digital Communication Network (DCN)
 - North America (NA)
 - Frequency/Time/Code division multiple access (FDMA/TDMA/CDMA)
Personal Communication Service (PCS)

- Personal = User specific (vs location specific)
 - ⇒ Phone # for user regardless of his/her location

- FCC spectrum for PCS requires digital service

- PCS = Digital Cellular = IS-136, GSM, or CDMA

- PCS Spectrum:

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>B</th>
<th>E</th>
<th>F</th>
<th>C</th>
<th>Unlic. PCS</th>
</tr>
</thead>
</table>

Blocks A, B are for major trading areas.
Blocks C, D, E, F are for basic trading areas.
Unlicensed PCS is nationwide.
CdmaOne

- Code Division Multiple Access (CDMA)
- CdmaOne = 2G (IS-95a), CdmaTwo = IS-95b, CDMA2000 = 3G
- Each user uses the entire spectrum. 22-40 calls per carrier.
- Different spreading code for each user.
- Neighboring cells can use the same frequency spectrum (but different codes).
- Precise power control is critical.
- Can serve more users than TDMA or GSM
- Data users limited to 4.8 and 14.4 kbps
- CdmaTwo extension offers up to 115.2 kbps
- Verizon, Sprint networks are CdmaOne networks
GSM

- Global System for Mobile Communication (GSM)
- 1982: Started as "Groupe Special Mobile" by Conference of European Posts and Telecom (CEPT)
- Good speech quality, ISDN compatibility, and fraud secure.
- 900 MHz operation in Europe.
- UK allocated 1800 MHz and adapted GSM standard as "DCS 1800"
- DCS 1800 also used in Russia and Germany.
GSM (Cont)

- FCC allocated 1900 MHz for PCS. Many carriers adapted GSM standard as "DCS 1900" or "North American GSM"
- VoiceStream, Powertel, and Bellsouth Mobility use NA GSM.
- 280 GSM networks in 100 countries worldwide.
GSM Radio Link

Slow Associated Control

Traffic Channel (SACCH)

Traffic Channels Unused

Multiframe
120 ms

Burst Period

Frame
120/26 ms

Burst 15/26 ms

Tail Bits 3

Data Bits 57

Stealing Bits 1

Training Sequence 26

Stealing Bits 1

Data Bits 57

Tail Bits 3

Guard Bits 8.25

Washington University in St. Louis CSE574s ©2010 Raj Jain
GSM Radio Link (Cont)

- 890-915 MHz uplink, 935-960 MHz downlink
- 25 MHz $\Rightarrow 124 \times 200$ kHz Channels
- Each channel is TDMA with burst (slot) period of 15/26 ms.
- Eight burst periods = TDMA frame of 120/26 ms.
- One channel = one burst period per TDMA frame.
- 26 TDMA frames \Rightarrow one Multiframe
 24 are used for traffic, 1 for control, and 1 is unused.
- Slow Associated Control Channel (SACCH)
 - If SACCH does not have sufficient capacity, Fast Associated Control Channel (FACCH) is used by stealing ½ of some bursts.
- Stealing bits identify whether the 1/2-slot carries data or control
- 200 kHz = 270.8 kbps/8 slots \Rightarrow 34 kbps/slot
 15/26 ms/slot \Rightarrow 270.8*15/26 = 156.25 bits/slot
 \Rightarrow 9.6 kbps/user after encryption and FEC overhead
- Full rate vocoders \Rightarrow Voice is sampled at 64 kbps compressed to 16 kbps.
GSM Specs

- Subscriber Identify Module (SIM) contains a micro-controller and storage. Contains authentication, encryption, and accounting info. Owners need 4-digit PIN.
- SIM cards can contain additional info such as emergency medical info.
- Mobile Assisted Handoff: Mobile sends identities of six candidate base stations for handoff. MSC selects.
- Short Message Service (SMS)
 - Up to 160 characters
 - Sent over control channel
 - Unicast or broadcast
A particular cellular system has the following characteristics: cluster size = 7, uniform cell size, user density = 100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.

A. Using FDMA/FDD:
 1. How much bandwidth is available per cell using FDD?
 2. How many users per cell can be supported using FDMA?
 3. What is the cell area?
 4. What is the cell radius assuming circular cells?

B. If the available spectrum is divided into 35 channels and TDMA is employed within each channel:
 1. What is the bandwidth and data rate per channel?
 2. How many time slots are needed in a TDMA frame to support the required number of users?
 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
 4. How many bits are transmitted in each time slot?
A particular cellular system has the following characteristics: cluster size = 7, uniform cell size, user density = 100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.

A. Using FDMA/FDD:
 1. How much bandwidth is available per cell using FDD?
 49 MHz/7 = 7 MHz/cell
 FDD ⇒ 3.5 MHz/uplink or downlink
 2. How many users per cell can be supported using FDMA?
 10 kbps/user = 10 kHz ⇒ 350 users per cell
 3. What is the cell area?
 100 users/sq km ⇒ 3.5 Sq km/cell
 4. What is the cell radius assuming circular cells?
 \[\pi r^2 = 3.5 \Rightarrow r = 1.056 \text{ km} \]
Cellular System Capacity (Cont)

B. If the available spectrum is divided into 35 channels and TDMA is employed within each channel:

1. What is the bandwidth and data rate per channel?
 \[\frac{3.5 \text{ MHz}}{35} = 100 \text{ kHz/Channel} = 100 \text{ kbps} \]

2. How many time slots are needed in a TDMA frame to support the required number of users?
 \[10 \text{ kbps/user} \Rightarrow 10 \text{ users/channel} \]

3. If the TDMA frame is 10 ms, how long is each user slot in the frame?
 \[\frac{10 \text{ ms}}{10} = 1 \text{ ms} \]

4. How many bits are transmitted in each time slot?
 \[1 \text{ ms} \times 100 \text{ kbps} = 100 \text{ b/slot} \]
Summary

1. Geometry of cells and frequency reuse
2. Generations: 1G (Analog), 2G (digital), 3G (Data)
3. AMPS is 1G cellular technology using FDMA
4. IS-95 is 2G cellular technology using CDMA
5. GSM is 2G cellular technology using TDMA
Reading Assignment

- Read sections 3.1 to 3.5 from Murthy and Manoj or read chapter 14 of Stallings Data and Computer Communications, 8th edition (Both books are in 2 hour reserve section of the WUSTL library).

- “GSM Mobile Services,”

 http://www.geocities.com/gsmmobilereport/index.htm
Wikipedia Articles 1G and 2G

Wikipedia Articles 1G and 2G (Cont)

- http://en.wikipedia.org/wiki/Mobile_telecommunications
- http://en.wikipedia.org/wiki/Personal_Communications_Service
- http://en.wikipedia.org/wiki/1G
- http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_Service
- http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System
Wikipedia Articles 1G and 2G (Cont)

List of Acronyms

- **AMPS**: Advanced Mobile Phone System
- **BS**: Base Station
- **BSC**: Base station controller
- **BTS**: Base Transceiver Station
- **CDMA**: Code Division Multiple Access
- **CDPD**: Cellular Digital Packet Data
- **CEPT**: Conference of European Posts and Telecom
- **COW**: Cells on Wheels
- **DCS**: Digital Cellular Service
- **EIR**: Equipment Identity Register
- **FCC**: Federal Communications Commission
- **FDD**: Frequency Division Duplexing
- **FEC**: Forward Error Correction
- **GSM**: Global system for mobile communication
- **HLR**: Home Location Register
List of Acronyms (Cont)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMEI</td>
<td>International Mobile Equipment Identity</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IS</td>
<td>Interim Standard</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>MSC</td>
<td>Mobile Switching Center</td>
</tr>
<tr>
<td>MTSO</td>
<td>Mobile Telephone Switching Office</td>
</tr>
<tr>
<td>NA</td>
<td>North America</td>
</tr>
<tr>
<td>NMT</td>
<td>Nordic Mobile Telephone</td>
</tr>
<tr>
<td>PCS</td>
<td>Personal Communication Service</td>
</tr>
<tr>
<td>PIN</td>
<td>Personal identification number</td>
</tr>
<tr>
<td>SACCH</td>
<td>Slow Associated Control Channel</td>
</tr>
<tr>
<td>SMR</td>
<td>Specialized Mobile Radio</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
</tbody>
</table>