Wireless Network Security

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse571-17/
Overview

1. Why Wireless is Insecure and What can we do about it?
2. IEEE 802.11 Wireless LAN Overview
3. Legacy 802.11 Security: WEP
4. IEEE 802.11i Wireless LAN Security: WPA, WPA2

Why Wireless is Insecure?

- **Channel**: Broadcast ⇒ Eavesdropping, Jamming, Active attacks on protocols
- **Mobility**: Portable devices ⇒ Not physically secured
- **Resources**: Limited memory and processing resources ⇒ Need simpler security
- **Accessibility**: May be left unattended
Wireless Network Threats

1. **Accidental Association**: Overlapping networks ⇒ unintentionally connect to neighbors
2. **Malicious Association**: Malicious access points (Free public WiFi) can steal passwords
3. **Ad-Hoc Networks**: Two computers can exchange data
4. **Nontraditional Networks**: Bluetooth can be used to eavesdrop
5. **MAC Spoofing**: Change MAC address to match a privileged computer
6. **Man-In-The-Middle Attacks**: Using rogue access point between the user and the real access point
7. **Denial of Service (DoS)**: Keep the media busy
8. **Network Injection**: Spoof routing/management messages
Countermeasures

- Turn-off SSID broadcast
- Use Cryptic SSID names
- Reduce signal strength
- Locate APs away from boundary
- Use encryption
- Use IEEE 802.1x network access control
- Change the router’s user ID from default
- Change the router’s password from default
- MAC Filtering: Only specific MAC address connect
Mobile Device Security

Mobile ⇒ Dynamic/no boundary ⇒ Cloud

1. Lack of Physical security: Mobiles cannot be locked
2. Not all devices can be trusted
3. Untrusted networks between device and the organization
4. Wide variety of contents on mobiles than on other computers (music, video, games, …)
5. Apps from untrusted vendors
6. Data may get on unsecured device
7. Location information may be used for attack
Wi-Fi Operation

- Access Points (APs) periodically broadcast a beacon with SSID (service set ID) and security level.
- Subscriber stations listen to these beacons, measure signal strength and determine which AP to join.
- Subscribers can also send a “Probe” to find AP’s in the neighborhood.
- AP authenticates the subscriber station using shared keys.
- Subscriber stations and AP exchange encrypted packets.
- Subscriber station send a “Disassociate” message and log off.

Ref: http://en.wikipedia.org/wiki/Service_set_%28802.11_network%29
IEEE 802.11 Architecture

Distribution System

Server

Access Point

Station

Basic Service Set

Access Point

Station

2nd BSS

Station

IBSS

Ad-hoc Station

Ad-hoc Station

Ad-hoc network

©2017 Raj Jain
IEEE 802.11 Architecture (Cont)

- Basic Service Area (BSA) = Cell
- Each BSA may have several access points (APs)
- Basic Service Set (BSS)
 \= Set of stations associated with one AP
- Distribution System (DS) - wired backbone
- Extended Service Area (ESA) = Multiple BSAs interconnected via a distribution system
- Extended Service Set (ESS)
 \= Set of stations in an ESA
- Independent Basic Service Set (IBSS): Set of computers in ad-hoc mode. May not be connected to wired backbone.
- Ad-hoc networks coexist and interoperate with infrastructure-based networks
IEEE 802.11 Services

- **Association**: A STA connecting with an AP.
- **Disassociation**: Termination of association.
- **Re-association**: Transfer of association from one AP to another. Mobility within BSS, within ESS, between two ESSs.
- **MSDU Delivery**: Interchange of packets between STAs
- **Distribution**: Delivery of packets between STAs possibly via the backbone distribution system
- **Integration**: Interchange of packets between STAs and wired stations connected to LANs on the distribution system
- **Authentication**: The station is authenticated
- **De-authentication**
- **Privacy**: Encryption
Wired Equivalent Privacy (WEP)

- WEP ⇒ Privacy similar to a wired network
 ⇒ Intellectual property not exposed to casual browser
 ⇒ Not protect from hacker
- First encryption standard for wireless. Defined in 802.11b
- Provides authentication and encryption
- Shared Key Authentication
 ⇒ Single key is shared by all users and access points
WEP Details

- Each device has 4 static WEP keys
- 2-bit key ID sent with Initialization Vector (IV) in clear in each packet
- Per-Packet encryption key = 24-bit IV + one of pre-shared key
- Encryption Algorithm: RC4
 - Standard: 24 + 40 = 64-bit RC4 Key
 - Enhanced: 24 + 104 = 128 bit RC4 key
- WEP allows IV to be reused
- CRC-32 = Integrity Check Value (ICV)
- Data and ICV are encrypted under per-packet encryption key

802.11 Header	Data	CRC
802.11 Header | IV | Data | ICV
WEP Encapsulation

WEP Keys
K1 K2 K3 K4

CRC-32
Data ICV

Xor
Keystream

RC4

IV WEP Key
MAC hdr IV Pad KID Cipher text CRC
WEP Decapsulation

- MAC hdr
- IV
- Pad
- KID
- Cipher text
- CRC

WEP Keys
- K1
- K2
- K3
- K4

WEP Key
- IV
- K1
- K2
- K3
- K4

IV
- WEP Key

RC4
- Keystream

CRC-32
- Data
- ICV

Xor
- Yes
 - Success
- No
 - Fail

= Yes
= No
Ron's Cipher 4 (RC4)

- Stream Cipher
 - A pseudo-random stream is generated using a given key and xor'ed with the input
- Pseudo-random stream is called **One-Time pad**
- Key can be 1 to 256 octet
- See the C code in the reference.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse571-17/
WEP Authentication

- Authentication is a via Challenge response using RC4 with the shared secret key.

Diagram:
- **Station**
- **Access Point**
- **Challenge (Nonce)**
- **Response (Nonce RC4 encrypted under shared key)**
- **Decrypted nonce OK?**
WEP Review

- Four 40-bit or 104-bit Keys are manually programmed in each subscriber station and AP
- A 24-bit IV and WEP key is used to form a 64b or 128b RC4 key
- A keystream is generated using the RC4 key
- A 32-bit CRC is added as “Integrity check value” (ICV) to the packet
- Plain text and keystream is xor’ed. A 32-bit CRC is added in clear.
Problems with WEP Authentication

- Record one challenge/response
- Both plain text and encrypted text are available to attacker
- XOR the two to get the keystream
- Use that keystream and IV to encrypt any subsequent challenges
Problem with Stream Cipher

- Consider two packets with the same IV ⇒ Same keystream b
- $c_1 = p_1 \oplus b; c_2 = p_2 \oplus b \Rightarrow c_1 \oplus c_2 = p_1 \oplus p_2$
- Two packets w same IV ⇒ XOR = Difference in plain text
- 50% chance of using the same IV in 4823 packets.
-Recovered ICV matches ⇒ Plain text is correct
- Possible to recover all 2^{24} keystreams in a few hours
Problems with WEP ICV

- CRC is used as ICV
- CRC: Message polynomial is shifted and divided by CRC polynomial, the remainder is sent as CRC
 \[p = p_n x^n + p_{n-1} x^{n-1} + \ldots + p_0 x^0 \]
- Remainder(\(p+q\), c) = Remainder(\(p\), c) + Remainder(\(q\), c)
- ICV is linear: ICV(\(p+q\)) = ICV(\(p\)) + ICV(\(q\))
- **Conclusion**: XOR any CRC-32 valid plain text to encrypted packet. The modified packet will pass the ICV after decryption.
WEP Problems

- No centralized key management
 Manual key distribution ⇒ Difficult to change keys
- Single set of Keys shared by all ⇒ Frequent changes necessary
- No mutual authentication
- No user management (no use of RADIUS)
- IV value is too short. Not protected from reuse.
- Weak integrity check.
- Directly uses master key
- No protection against replay

802.11i Wireless LAN Security

- Wi-Fi Alliance **Wi-Fi Protected Access (WPA)**
 - Software modification to existing WEP systems
 - Key mixing function to generate per packet key
 - Sequence Number to protect against replay attacks
 - 64-bit message integrity check (MIC)
 - Uses the same RC4 encryption

- 802.11i **Robust Security Network (RSN) or WPA2**
 - Requires hardware replacement
 - Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP)
 - AES encryption with counter mode

802.11i Phases of Operation

- Phase 1 - Discovery
- Phase 2 - Authentication
- Phase 3 - Key Management
- Phase 4 - Protected Data Transfer
- Phase 5 - Connection Termination
IEEE 802.11i Discovery Phase

- Capability negotiation
 - Confidentiality and Integrity: WEP, TKIP, CCMP, vendor specific
 - Authentication: 802.1x, Pre-shared key, vendor specific

STA → AP:
- Probe Request: May I join please?
- Probe Response: Yes, you can.
- Null Authentication Request
- Null Authentication Response
- Secure Association Request
- Association Response with Security Parameters

Encryption, Integrity, Authentication Methods
802.11i Key Hierarchy

Pre-shared Key
- 256b

AAA Key
- Or
- 256b

Pairwise Master Key
- 256b

Supplicant nonce

Authenticator nonce

4-way Handshake

PRF

Pair-wise Transient Key (PTK)
- 384b

Temporal Key (CCMP)
- 512b

EAPOL Key Confirmation Key
- 128b

EAPOL Key Encryption Key
- 128b

Temporal Key (CCMP)
- 128b

Group Master Key
- 128b

PRF

Group Temporal Key (CCMP)
- 128b

Group Transient Key (TKIP)
- 256b

TKIP:
- EAPOL Key Confirmation Key
 - 128b

- EAPOL Key Encryption Key
 - 128b

- Temporal Encryption Key
 - 128b

- MIC from AP Key
 - 64b

- MIC to AP Key
 - 64b

- Group Temporal Key
 - 128b

- MIC AP
 - 64b

- MIC STA
 - 64b

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/cse571-17/

©2017 Raj Jain
WPA/WPA2 Keys

- Pre-Shared Key: Distributed individually out-of-band
- AAA Key: Secret key between supplicant and AAA server
- Master Key: Derived from Pre-shared or AAA key
- Transient Key: Intermediate quantity
- Temporal = For this session
- EAPOL Key Confirmation Key: For integrity of EAPOL-Key frame
- EAPOL Key Encryption Key: To encrypt EAPOL-key frame
- Temporal Encryption Key: Used to encrypt data
- Temporal MIC Key: Used to create Data MIC (only for TKIP)
- Temporal Key = Temporal Encryption Key + Temporal MIC Key
- Pair-Wise: STA to another STA or AP (Unicast)
- Group: STA/AP to a set of STAs (Multicast)
- STA Key: Direct station-to-station communication in IBSS
- Per-Frame Encryption Key: Unique key for each MPDU
Key Management

- STA
 - Generate PTK
 - Anonce, A_MAC_Addr
 - Snonce, S_MAC_Addr
 - PTK installed, A.Addr, MIC
 - I know PTK (Authenticates AP)
 - S.Addr, MIC
 - I know PTK (Authenticates STA)
 - GTK, MIC
 - MIC
 - ACK

- AP
 - Generate PTK

All messages are EAPOL Key messages. EAPOL key confirmation key is used to compute MIC for EAPOL messages.

Ref: http://en.wikipedia.org/wiki/IEEE_802.11i-2004

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse571-17/ ©2017 Raj Jain
802.11i Protected Data Transfer Phase

Two schemes for protecting data

- Temporal Key Integrity Protocol (TKIP)
 - S/w changes only to older WEP
 - Adds 64b Michael message integrity code (MIC) instead of 32b CRC in WEP
 - Encrypts MPDU plus MIC value using 128b RC4

- Counter Mode-CBC MAC Protocol (CCMP)
 - Uses cipher block chaining message authentication code (CBC-MAC) for integrity
 - Uses Counter mode AES for encryption

IEEE 802.11i Pseudo-Random Fn

- PRF is required to generate nonces and keys.
- HMAC-SHA-1 is used for all
- 4 Inputs: K=Secret Key, A= Use specific text string, B= Use specific Data, length
- Set counter to 0 and take desired number of bits from the left (if less than 160)
- If more than 160 bits needed, run the function again with the next sequence number
- Example: Pair-wise Temporal Key for CCMP
 - PTK=PRF{PMK, “Pairwise key expansion”, min(AP Addr, STA Addr)||max(AP-Addr, STA-Addr)||min(Anonce, Snonce)||max(Anonce, Snonce), 384}
Security Problems Addressed

- No MAC address spoofing: MAC address included in both Michael MIC and CCMP MAC
- No replay: Each message has a sequence number (TSC in TKIP and PN in CCMP)
- No dictionary based key recovery: All keys are computer generated binary numbers
- No keystream recovery: Each key is used only once in TKIP. No keystream in CCMP.
- No Weak Key Attack: Special byte in IV in TKIP prevents weak keys. Also, keys are not reused.
- No rouge APs: Mutual authentication optional. Some APs provide certificates.
- Not Addressed: DoS attack using disassociation or deauthentication attack. Mgmt frames are still not encrypted.
Summary

1. Wireless networks and mobile devices are subject to more attacks than wired network or static devices.

2. 802.11 LANs consist of Basic Service Areas connected via a wired distribution system into an Extended Service Area.

3. 802.11 originally used Wired Equivalent Privacy (WEP) which used RC4 for encryption and CRC-32 for MAC. Both were trivial to attack.

4. TKIP or WPA provides per-packet key and 64-bit MIC using RC4.

5. RSN or WPA2 provides stronger encryption and authentication using AES.
Homework 18

- WEP assumed all devices in the network share a secret key. The purpose of the authentication scenario is for the STA to prove that it possesses the secret key. As shown in the figure below, the STA sends a message to AP requesting authentication. The AP issues a challenge, which is a sequence of 128 random bytes sent as plain text. The STA encrypts the challenge with the shared key and returns it to the AP. The AP decrypts the incoming value and compares it to the challenge that it sent. If there is a match, the AP confirms that authentication has succeeded.

 a. This authentication scheme is one-sided. How can it be made mutual?
 b. What information does it provide to an attacker making it easy to attack?
 c. The encryption scheme is RC4 stream cipher. How can a attacker create a valid response for any challenge after watching just one valid authentication.

Diagram:

<table>
<thead>
<tr>
<th>STA</th>
<th>Request</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Challenge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Success</td>
<td></td>
</tr>
</tbody>
</table>
Lab 18: Wireless Cracking

- In this lab, you will use `aircrack-ng` and associated tools to crack your WiFi password and decrypt your encrypted data.
- Do this lab on your home network not at WUSTL.
- You will need your laptop with Kali Linux USB and a mobile phone, tablet, or another computer connected to your home network.
- You will need Internet access on Kali Linux so make sure that you have another Internet connection.
- Download a list of passwords for aircrack called `darkc0de.lst` from:
 http://www.mediafire.com/file/5tvpocv5gijo0dc/darkc0de.lst
- Add your password to the list. Note that aircrack can crack only from the list of passwords you give it.
Lab 18: Wireless Cracking (Cont)

1. Log in to kali Linux USB (live option)
 - Verify your wireless network is working fine by `iwconfig`
 - Use `iwlist wlan` scanner to scan the networks around you
2. Use `airmon-ng` to start monitoring your wireless interface
3. Use `ifconfig` and notice the changes
4. Check all the available networks around you by using `airodump-ng` in Kali on your wireless interface
 - Use `airodump-ng` with appropriate options to track your network, channel and write the result to a .cap file
5. While running `airodump-ng`, disconnect and reconnect your mobile phone or tablet WiFi (or forget the network on the mobile and reconnect to it)
 - When you see WPA-Handshake on airdump-ng output, then proceed to the next step. Otherwise, repeat the last step (disconnect/connect) again
Lab 18: Wireless Cracking (Cont)

6. Use `aircrack-ng` with the appropriate options using the list you downloaded and the .cap file you saved in the previous step
 - Submit a screenshot of the output (blackout your password)
 - Collect another .cap file with the same options but this time use your network from your mobile by accessing web pages, emails, …, many times

7. Use `airdecap-ng` with options to provide your network name, your password, your BSSID and the .cap file you collected in the previous step
 - Check the decryption file and submit a screenshot of your command line
 - If it does not have any decrypted data then repeat the last two steps

☐ Submit all commands you used and the seven screenshots indicated above.
References Cited

- http://bradconte.com/rc4_c

Acronyms

- AAA: Authentication Authorization and Accounting
- ACK: Acknowledgement
- AES: Advanced Encryption Protocol
- AP: Access Point
- AS: Authentical Server
- BSA: Basic Service Area
- BSS: Basic Service Set
- BSSID: Basic Service Set ID
- CBC-MAC: CBC Message Authentication Code
- CBC: Cipher Block Chaining
- CCMP: Counter Mode-CBC MAC Protocol
- CRC: Cyclic Redundancy Check
- CTR: Counter mode of Block Cipher
- DoS: Denial of Service
- DS: Distribution System
- EAPOL: Extensible Authentication Protocol over LAN
Acronyms (Cont)

- ESA: Extended Service Area
- ESS: Extended Service Set
- GTK: Group Temporal Key
- HMAC-SHA-1: HMAC with SHA-1 hash
- HMAC: Hybrid Message Authentication Code
- IBSS: Independent Basic Service Set
- ICV: Integrity check value
- ID: Identifier
- IEEE: Institute of Electrical and Electronics Engineers
- IV: Initialization Value
- KID: Key Identifier
- LAN: Local Area Network
- LLC: Logical Link Control
- MAC: Media Access Control
- MPDU: MAC Protocol Data Unit
- PDU: Protocol Data Unit
Acronyms (Cont)

- PMK Pairwise Master Key
- PN Message Sequence Number in CCMP
- PRF Pseudo-Random Function
- PTK Pair-wise Transient Key
- RADIUS Remote Access Dial-In User Server
- RC4 Ron's Code 4
- RSN Robust Security Network
- SHA Secure Hash Algorithm
- SSID Service set ID
- STA Station
- TKIP Temporal Key Integrity Protocol
- TSC TKIP Sequence Counter
- USB Universal Serial Bus
- WEP Wire equivalent privacy
- WiFi Wireless Fidelity
- WLAN Wireless Local Area Network
Acronyms (Cont)

- WPA Wi-Fi Protected Access
- WPA2 Wi-Fi Protected Access 2
- WUSTL Washington University in Saint Louis
- XOR Exclusive-Or
Scan This to Download These Slides

Raj Jain
http://rajjain.com
Related Modules

CSE571S: Network Security (Spring 2017),
http://www.cse.wustl.edu/~jain/cse571-17/index.html

CSE473S: Introduction to Computer Networks (Fall 2016),
http://www.cse.wustl.edu/~jain/cse473-16/index.html

Wireless and Mobile Networking (Spring 2016),
http://www.cse.wustl.edu/~jain/cse574-16/index.html

CSE571S: Network Security (Fall 2014),
http://www.cse.wustl.edu/~jain/cse571-14/index.html

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw