Authentication, Authorization, Accounting (AAA)

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse571-11/
Overview

- RADIUS
- Authentication Protocols: PAP, CHAP, MS-CHAP
- Extensible Authentication Protocol (EAP)
- EAP Upper Layer Protocols
- 802.1X
RADIUS

- **Remote Authentication Dial-In User Service**
- Central point for **Authorization, Accounting, and Auditing data** ⇒ **AAA** server
- Network Access servers get authentication info from RADIUS servers
- Allows RADIUS Proxy Servers ⇒ ISP roaming alliances
- Uses UDP: In case of server failure, the request must be re-sent to backup ⇒ Application level retransmission required
 - TCP takes too long to indicate failure

Four Core Messages: Request, Challenge, Accept, Reject.

Message Format: Code is the message type. Identifier is used to match request/response.

<table>
<thead>
<tr>
<th>Code</th>
<th>Identifier</th>
<th>Length</th>
<th>Authenticator</th>
<th>Attributes</th>
</tr>
</thead>
</table>

- Username
- Challenge
- Response
- OK
RADIUS Packet Format

<table>
<thead>
<tr>
<th>Code</th>
<th>Identifier</th>
<th>Length</th>
<th>Authenticator</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>1B</td>
<td>2B</td>
<td>16B</td>
<td></td>
</tr>
</tbody>
</table>

Codes:

1 = Access Request
2 = Access Accept
3 = Access Reject
4 = Accounting request
5 = Accounting Response
11 = Access Challenge
12 = Server Status (experimental)
13 = Client Status (Experimental)
255 = Reserved
RADIUS Accounting

- RFC 2866, June 2000
- Client sends to the server:
 - Accounting Start Packet at service beginning
 - Accounting Stop Packet at end
- All packets are acked by the server
- Packet format same as in authentication
Problems with RADIUS

- Does not define standard failover mechanism
 ⇒ varying implementations
- Original RADIUS defines integrity only for response packets
- RADIUS extensions define integrity for EAP sessions
- Does not support per-packet confidentiality
- Billing replay protection is assumed in server.
 Not provided by protocol.
- IPsec is optional
- Runs on UDP ⇒ Reliability varies between implementation.
 Billing packet loss may result in revenue loss.
- RADIUS does not define expected behavior for proxies,
 redirects, and relays ⇒ No standard for proxy chaining
Problems with RADIUS (Cont)

- Does not allow server initiated messages
 ⇒ No On-demand authentication and unsolicited disconnect
- Does not define data object security mechanism
 ⇒ Untrusted proxies can modify attributes
- Does not support error messages
- Does not support capability negotiation
- No mandatory/non-mandatory flag for attributes
- Servers name/address should be manually configured in clients
 ⇒ Administrative burden
 ⇒ Temptation to reuse shared secrets
Diameter Base Protocol

- Enhanced RADIUS. Light weight.
- Can use UDP, TCP, SCTP (Stream Control Transmission Protocol)
- PDU format incompatible with RADIUS
- Can co-exist with RADIUS in the same network
- Defines standard failover algorithm
- Supports:
 - Delivery of attribute-value pairs (AVPs)
 - Capability negotiation
 - Error notification
 - Ability to add new commands and AVPs
 - Discovery of servers via DNS
 - Dynamic session key derivation via TLS

All data is delivered in the form of AVPs
AVPs have mandatory/non-mandatory bit
Support for vendor specific Attribute-Value-Pairs (AVPs) and commands
Authentication and privacy for policy messages
Peer-to-peer protocol ⇒ any node can initiate request.
Servers can send unsolicited messages to Clients
⇒ Increases the set of applications
Documents: Base, transport profile, applications
Applications: NAS, Mobile IP, Credit control (pre-paid, post-paid, credit-debit), 3G, EAP, SIP
Password Authentication Protocol (PAP)

- RFC 1334, Oct 1992
- Authenticator sends a authentication request
- Peer responds with a username and password in plain text
- Authenticator sends a success or failure
- Code: 1=Auth Request, 2=Auth Ack, 3=Auth Nak

<table>
<thead>
<tr>
<th>Code</th>
<th>ID</th>
<th>Len</th>
<th>Name Len</th>
<th>Name Val</th>
<th>Pswd Len</th>
<th>Pswd Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>1B</td>
<td>2B</td>
<td>1B</td>
<td>Var</td>
<td>1B</td>
<td>Var</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>ID</th>
<th>Len</th>
<th>Success/Failure Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>1B</td>
<td>2B</td>
<td>1B</td>
</tr>
</tbody>
</table>

CHAP

- Challenge Handshake Authentication Protocol
- RFC 1994, August 1996
- Uses a shared secret (password)
- Authenticator sends a challenge
- Peer responds with a MD5 checksum hash of the challenge
- Authenticator also calculates the hash and sends success or failure
- Requires both ends to know the password in plain text
- Replay attack prevention ⇒ Use a different challenge every time

MS-CHAP

- Microsoft version of CHAP
- MS-CHAP in RFC 2433, Oct 1998
- Does not require password in plain text
- Uses hash of the password
- 8B challenge \Rightarrow 24B LM (LAN Manager) compatible response, 24B NTLM compatible response and 1B NTLM flag
- LM passwords are limited to 14 case-insensitive OEM characters
- NT passwords are 0 to 256 case-sensitive Unicode characters
- Flag \Rightarrow NT response is meaningful and should be used
- Also allows users to change password
- MS-CHAPv2 in Windows 2000 onwards.

Extensible Authentication Protocol (EAP)

- Each authentication protocols required a new protocol
 ⇒ Extensible Authentication Protocol
- Initially developed for point-to-point protocol (PPP)
- Allows using many different authentication methods
- Single-Step Protocol ⇒ Only one packet in flight
 ⇒ Duplicate Elimination and retransmission
 Ack/Nak ⇒ Can run over lossy link
- No fragmentation. Individual authentication methods can deal with fragmentation. One frag/round trip ⇒ Many round trips
- Allows using a backend authentication server ⇒ Authenticator does not have to know all the authentication methods
- Can run on any link layer (PPP, 802, ...). Does not require IP.

EAP Terminology

- Peer: Entity to be authenticated = Supplicant
- Authenticator: Authenticating entity at network boundary
- Authentication Server: Has authentication database
- EAP server = Authenticator if there is no backend authentication server otherwise authentication server
- Master Session Key (MSK)= Keying material agreed by the peer and the EAP server. At least 64B. Generally given by the server to authenticator.
EAP Exchange

- EAP Message Format:
 - Code | Identifier | Length | Data
 - 8b | 8b | 16b |

- Only four types of messages:
 - Request (01)
 - Response (02)
 - Success (03)
 - Failure (04)

- Supplicant
- Authenticator

- Identifier is incremented for each message. Identifier in response is set equal to that in request.

- Type field in the request/response indicates the authentication. Assigned by Internet Assigned Number Authority (IANA)
- EAP Layer demultiplexes using code. Code 1 (request), 3 (success), and 4 (failure) are delivered to the peer layer.
- Code 2 (response) is delivered to the EAP authenticator layer.
- Both ends may need to implement peer layer and authenticator layer for mutual authentication.
- Lower layer may be unreliable but it must provide error detection (CRC).
- Lower layer should provide MTU of 1020B or greater.

Ref: RFC 3748
EAP Pass through Authenticator

- EAP Peer/Auth layers demultiplex using “type” field.
EAP Upper Layer Protocols

- Lightweight EAP (LEAP): Uses MS-CHAP. Not secure.
- EAP-TTLS: Tunneled TLS. Only server certificates. Secure tunnel for peer.
- Protected EAP (PEAP): Server Certificates. Client password.
- PEAPv1 or EAP-GTC: Generic Token Cards. Client uses secure tokens.
- EAP-SIM: Subscriber Identity Module used in GSM. 64b keys.
- EAP-AKA: Authentication and Key Agreement. Used in 3G. 128b keys.
- EAP-PSK: Pre-shared key+AES-128 to generate keys.

Security Token

- Security Token = Small hardware device carried by users. May store cryptographic keys, biometric data (fingerprint), PIN entry pad.
- Based on USB, Bluetooth, Cell phones (SMS or Java)
- Use smart cards
- Two-factor authentication = What you have and what you know

One-Time Password

- Three Types:
 1. Use a math algorithm to generate a new password based on previous
 2. Uses time to generate password ➞ Synchronized time between server and client
 3. Use a math algorithm to generate a new password based on a challenge from the server and a counter.

- Time synchronized approach allows users to generate password and not use it. The server may compare with the next n passwords to allow for time miss-synchronization.

- Non-time synchronized OTP do not need to be powered all the time ➞ battery lasts long. Have been attacked by phishing. Time-based OTP need to be used right-away.

Ref: http://en.wikipedia.org/wiki/One-time_password
EAP over LAN (EAPOL)

- EAP was designed for Point-to-point line
- IEEE extended it for LANs ⇒ Defines EAPOL
- Added a few more messages and fields
- Five types of EAPOL messages:
 - EAPOL Start: Sent to a multicast address
 - EAPOL Key: Contains encryption and other keys sent by the authenticator to supplicant
 - EAPOL packet: Contains EAP message (Request, Response, Success, Failure)
 - EAPOL Logoff: Disconnect
 - EAPOL Encapsulated-ASF-Alert: Management alert
- Message Format: Version=1, Type=start, key, …,
802.1X

- Authentication framework for IEEE802 networks
- Supplicant (Client), Authenticator (Access point), Authentication server
- No per packet overhead \(\Rightarrow \) Can run at any speed
- Need to upgrade only driver on NIC and firmware on switches
- User is not allowed to send any data until authenticated

Ref: http://en.wikipedia.org/wiki/802.1x
802.1X Authentication

Station
- Can I connect please?
- What’s your user name?
- My user name is john
- What’s your password?
- My password is mary?
- You can connect!

Access Point
- Associate
- EAP Identity Request
- EAP Identity Response
- EAP Auth Request
- EAP Auth Response
- EAP-Success

Authentication Server
- EAP Auth Request
- EAP Auth Response
- EAP-Success
- EAP Identity Request
- EAP Identity Response
- EAP-Success
- EAP-Success
- EAP-Success
- EAP-Success

- Authentication method can be changed without upgrading switches and access points
- Only the client and authentication server need to implement the authentication method
Summary

- RADIUS allows centralized authentication server and allows roaming
- EAP allows many different authentication methods to use a common framework => Authenticators do not need to know about authentication methods
- Many variations of EAP authentication methods depending upon certificates, shared secrets, passwords
- 802.1X adds authentication to LAN and uses EAPOL
Homework 23

- How would you implement Kerberos v4 over EAP in a LAN environment. Show the sequence of EAP messages that will be sent for authentication and key generation. Show also EAPOL headers on the messages.

- Hint: Use the 6 messages used in Kerberos and put EAPOL headers on them.