AAA

Part II

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse571-07/
Overview

- TACACS, TACACS+
- RADIUS, Packet Format, Accounting
- Problems with RADIUS
- Diameter Base Protocol
- AAA Transport Profile
- AAA Key Management Principles
TACACS

- Terminal Access Controller Access-Control System
- Routing nodes in ARPAnet were called IMPS.
- IMPs with dial up access were called TIPs.
- BBN developed TACACS for ARPANET
- AAA server is a process in a UNIX server - called TACACS daemon.
- Uses UDP port 49
- Username and passwords were sent in clear for authentication ⇒ No longer used
- Cisco adopted TACACS for terminal servers extended TACACS or XTACACS
TACACS+

- Terminal Access Controller Access-Control System Plus
- Cisco's further improved version of TACACS and XTACACS
- Not compatible with TACACS
- Payload is encrypted
- Described in draft-grant-tacacs-02.txt, Jan 1997.
- Uses TCP port 49
RADIUS

- RFC 2138, June 2000
- UDP port 1812
- Why UDP?
 - In case of server failure, the request must be re-sent to backup ⇒ Application level retransmission required
 - TCP takes too long to indicate failure
 - Stateless protocol
RADIUS Packet Format

<table>
<thead>
<tr>
<th>Code</th>
<th>Identifier</th>
<th>Length</th>
<th>Authenticator</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>1B</td>
<td>2B</td>
<td>16B</td>
<td></td>
</tr>
</tbody>
</table>

Codes:

1 = Access Request
2 = Access Accept
3 = Access Reject
4 = Accounting request
5 = Accounting Response
11 = Access Challenge
12 = Server Status (experimental)
13 = Client Status (Experimental)
255 = Reserved
19-7

RADIUS Packet Format (Cont)

- 16B Authenticator is used to authenticate the reply from the RADIUS server.
- In Access-request packets, 16B random number is sent as authenticator.
- Password in packet:
 \[= \text{MD5}(\text{Shared secret} \mid \text{authenticator}) \oplus \text{password} \]
- Response Authenticator:
 \[= \text{MD5}(\text{Code} \mid \text{ID} \mid \text{Length} \mid \text{Request Auth} \mid \text{Attributes} \mid \text{Shared secret}) \]
- All attributes are TLV encoded.
RADIUS Accounting

- RFC 2866, June 2000
- Client sends to the server:
 - Accounting Start Packet at service beginning
 - Accounting Stop Packet at end
- All packets are acked by the server
- Packet format same as in authentication
RADIUS Server Implementations

Public domain software implementations:

- FreeRADIUS
- GNU RADIUS
- JRadius
- OpenRADIUS
- Cistron RADIUS
- BSDRadius
- TekRADIUS
Problems with RADIUS

- Does not define standard failover mechanism ⇒ varying implementations
- Original RADIUS defines integrity only for response packets
- RADIUS extensions define integrity for EAP sessions
- Does not support per-packet confidentiality
- Billing replay protection is assumed in server. Not provided by protocol.
- IPsec is optional
- Runs on UDP ⇒ Reliability varies between implementation. Billing packet loss may result in revenue loss.
- RADIUS does not define expected behavior for proxies, redirects, and relays ⇒ No standard for proxy chaining
Problems with RADIUS (Cont)

- Does not allow server initiated messages
 ⇒ No On-demand authentication and unsolicited disconnect
- Does not define data object security mechanism
 ⇒ Untrusted proxies can modify attributes
- Does not support error messages
- Does not support capability negotiation
- No mandatory/non-mandatory flag for attributes
- Servers name/address should be manually configured in clients
 ⇒ Administrative burden
 ⇒ Temptation to reuse shared secrets
Diameter Base Protocol

- RFC 3588, Sep 2003
- Defines standard failover algorithm
- Runs over TCP and Stream Control Transmission Protocol (SCTP)
- PDU format incompatible with RADIUS
- Can co-exist with RADIUS in the same network
- Supports:
 - Delivery of attribute-value pairs (AVPs)
 - Capability negotiation
 - Error notification
 - Ability to add new commands and AVPs
 - Discovery of servers via DNS
 - Dynamic session key derivation via TLS
Diameter Base Protocol (Cont)

- All data is delivered in the form of AVPs
- AVPs have mandatory/non-mandatory bit
- Peer-to-peer protocol ⇒ any node can initiate request.
- Documents: Base, transport profile, applications
- Applications: NAS, Mobile IP, Credit control (pre-paid, post-paid, credit-debit), 3G, EAP, SIP
AAA Transport Profile

- RFC 3539, June 2003
- Network Access Identifier (NAI) = User ID
- Application driven vs. network driven:
 Network is not the bottleneck for AAA messages
 ⇒ Application driven. No congestion issues.
- Slow Failover: TCP time outs ⇒ slow
- Use of Nagle Algorithm:
 Many AAA messages are combined in one TCP message
- Multiple Connections:
 Max 256 requests in progress between a client and a server
- Duplicate Detection: Servers and clients recognize duplicate request or responses and discard them.
 - A single request when duplicated can result in success and failure responses.
Invalidation of Transport Parameter Estimates: Timeouts should account for network congestion

Inability to use fast re-transmit: most AAA protocols are always close to initial window set to 1 or 2

Congestion Avoidance:

Delayed Acks: application driven ⇒ explicit acks

Premature failover: some implementation switch to backup server prematurely

Head of line blocking: TCP queue may build up after a packet loss ⇒ hold up other AAA requests on the same connection

Connection load balancing:
AAA Key Management Principles

- RFC 4962, July 2007 (Housley Criteria)
- Ability to negotiate crypto algorithms
 ⇒ Support multiple algorithms
- Ability to negotiate key derivation function is not required
- At least one suite of mandatory algorithms must be selected
- Use strong fresh session keys.
- Session keys must not be dependent on one another
 ⇒ Knowing a session key, Can’t find another session key
 ⇒ Use nonce to ensure each session key is fresh.
- Include replay detection mechanism
- Authenticate all parties
- Lower layer identifiers used for authorization should be authenticated
AAA Key Management Principles (Cont)

- Both peer and authenticator must be authorized ⇒ Detect unauthorized authenticator
- Peer, Authenticator, Authentication server should have a common view of authorizations
- Cipher suite selection should be securely confirmed ⇒ detect roll-back attacks
- All keys should be uniquely named and key name should disclose key value
- Prevent domino effect ⇒ Compromise of a single entity must not compromise key material at other entities in other branches (may compromise children entities)
- Bind key to its context: use, who has access, life time. All entities with access to keying material should have the same context.
Summary

- TACACS and TACACS+ are legacy AAA protocols
- RADIUS provides good security but lacks sophisticated mechanisms required for failover
- Diameter is a replacement for RADIUS. Fixes most known shortcomings of RADIUS.