Comparing Systems Using Sample Data

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/cse567-17/

Overview

- Sample Versus Population
- Confidence Interval for The Mean
- Approximate Visual Test
- One Sided Confidence Intervals
- Confidence Intervals for Proportions
- Sample Size for Determining Mean and proportions

Sample

- Old French word `essample'
 ⇒ `sample' and `example'
- One example ≠ theory
- One sample ≠ Definite statement

Sample Versus Population

- Generate several million random numbers with mean \(\mu \) and standard deviation \(\sigma \)
- Draw a sample of \(n \) observations
 \(\bar{x} \neq \mu \)
- Sample mean ≠ population mean
- Parameters: population characteristics
 = Unknown = Greek
- Statistics: Sample estimates = Random = English
Confidence Interval for The Mean

- k samples $\Rightarrow k$ Sample means
 - Can't get a single estimate of μ
 - Use bounds c_1 and c_2:
 - Probability $\{c_1 \leq \mu \leq c_2\} = 1- \alpha$
- Confidence interval: $[(c_1, c_2)]$
- Significance level: α
- Confidence level: $100(1-\alpha)$
- Confidence coefficient: $1-\alpha$

Determining Confidence Interval

- Use 5-percentile and 95-percentile of the sample means to get 90% Confidence interval \Rightarrow Need many samples.
- Central limit theorem: Sample mean of independent and identically distributed observations:
 $$\bar{x} \sim N(\mu, \sigma/\sqrt{n})$$
 Where $\mu =$ population mean, $\sigma =$ population standard deviation
- Standard Error: Standard deviation of the sample mean
 $$\sigma/\sqrt{n}$$
- $100(1-\alpha)$% confidence interval for μ:
 $$(\bar{x} - z_{1-\alpha/2}S/\sqrt{n}, \bar{x} + z_{1-\alpha/2}S/\sqrt{n})$$
 $z_{1-\alpha/2} = (1-\alpha/2)$-quantile of $N(0,1)$

Example 13.1

- $\bar{x} = 3.90$, $s = 0.95$ and $n = 32$
- A 90% confidence interval for the mean
 $$= 3.90 \mp (1.645)(0.95)/\sqrt{32} = (3.62, 4.17)$$
- We can state with 90% confidence that the population mean is between 3.62 and 4.17 The chance of error in this statement is 10%.

A 95% confidence interval for the mean
$$= 3.90 \mp (1.960)(0.95)/\sqrt{32}$$
$$= (3.57, 4.23)$$

A 99% confidence interval for the mean
$$= 3.90 \mp (2.576)(0.95)/\sqrt{32}$$
$$= (3.46, 4.33)$$

Confidence Interval: Meaning

- If we take 100 samples and construct confidence interval for each sample, the interval would include the population mean in 90 cases.
Confidence Interval for Small Samples

- 100(1-\(\alpha\)) % confidence interval for for \(n < 30\):
 \[\bar{x} - t_{[1-\alpha/2; n-1]} s/\sqrt{n}, \bar{x} + t_{[1-\alpha/2; n-1]} s/\sqrt{n}\]
- \(t_{[1-\alpha/2; n-1]} = (1-\alpha/2)-\text{quantile of a t-variate with n-1 degrees of freedom}\)

\[x \sim N(\mu, \sigma^2)\]
\[\Rightarrow (\bar{x} - \mu)/(\sigma/\sqrt{n}) \sim N(0, 1)\]
\[n - 1)s^2/\sigma^2 \sim \chi^2(n - 1)\]
\[\bar{x} - \mu)/\sqrt{s^2/n} \sim t(n - 1)\]

Example 13.2

- Sample: -0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04, and 0.09.
- Mean = 0, Sample standard deviation = 0.138.
- For 90% interval: \(t_{[0.95; 7]} = 1.895\)
- Confidence interval for the mean
 \[0 \mp 1.895 \times 0.138/\sqrt{8} = 0 \mp 0.0926 = (-0.0926, 0.0926)\]

Testing For A Zero Mean

- Difference in processor times: {1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4}.
- Question: Can we say with 99% confidence that one is superior to the other?
 - Sample size = \(n = 7\)
 - Mean = 7.20/7 = 1.03
 - Sample variance = (22.84 - 7.20*7.20/7)/6 = 2.57
 - Sample standard deviation = \(\sqrt{2.57} = 1.60\)
- Confidence interval = 1.03 \(\mp t \times 1.60/\sqrt{7} = 1.03 \mp 0.605t\)
 - \(100(1 - \alpha) = 99, \alpha = 0.01, 1 - \alpha/2 = 0.995\)
 - \(t_{[0.995; 6]} = 3.707\)
- 99% confidence interval = (-1.21, 3.27)
Example 13.3 (Cont)

- Opposite signs \Rightarrow we cannot say with 99% confidence that the mean difference is significantly different from zero.
- Answer: They are same.
- Answer: The difference is zero.

Example 13.4

- Difference in processor times: $\{1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4\}$.
- Question: Is the difference 1?
- 99% Confidence interval = $(-1.21, 3.27)$
- Yes: The difference is 1

Homework 13A: Exercise 13.2 (Updated)

- Answer the following for the data of Exercise 12.11:
 - What is the 10-percentile and 90-percentile from the sample?
 - What is the mean number of disk I/Os per program?
 - What is the 90% confidence interval for the mean?
 - What fraction of programs make less than or equal to 25 I/Os and what is the 95% confidence interval for the fraction?
 - What is the one sided 90% confidence interval for the mean?

Paired vs. Unpaired Comparisons

- **Paired**: one-to-one correspondence between the ith test of system A and the ith test on system B
- **Example**: Performance on ith workload
- **Use confidence interval of the difference**
- **Unpaired**: No correspondence
- **Example**: n people on System A, n on System B
 \Rightarrow Need more sophisticated method
Example 13.5

- Performance: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 2.5), (0.6, 3.6), (7.3, 1.7)}. Is one system better?
- Differences: {-13.7, 13.1, -2.8, -1.1, -3.0, 5.6}.
 - Sample mean = -0.32
 - Sample variance = 81.62
 - Sample standard deviation = 9.03
 - Confidence interval for the mean = \(-0.32 \pm t(3.69)\)
 \[t_{[0.95, 5]} = 2.015 \]
 - 90% confidence interval = \(-0.32 \pm (2.015)(3.69)\)
 \[= (-7.75, 7.11) \]
- Answer: No. They are not different.

Unpaired Observations

- Compute the sample means:
 \[\bar{x}_a = \frac{1}{n_a} \sum_{i=1}^{n_a} x_{ia} \]
 \[\bar{x}_b = \frac{1}{n_b} \sum_{i=1}^{n_b} x_{ib} \]
- Compute the sample standard deviations:
 \[s_a = \left(\frac{1}{n_a-1} \sum_{i=1}^{n_a} x_{ia}^2 - \bar{x}_a^2 \right)^{\frac{1}{2}} \]
 \[s_b = \left(\frac{1}{n_b-1} \sum_{i=1}^{n_b} x_{ib}^2 - \bar{x}_b^2 \right)^{\frac{1}{2}} \]

Example 13.6

- Times on System A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26}
- Times on System B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74}
- Question: Are the two systems significantly different?
- For System A:
 - Mean \(\bar{x}_a = 5.31 \)
 - Variance \(s_a^2 = 37.92 \)
 \[n_a = 6 \]
- For System B:
 - Mean \(\bar{x}_b = 5.64 \)
 - Variance \(s_b^2 = 44.11 \)
 \[n_b = 6 \]
Example 13.6 (Cont)

Mean difference $\bar{x}_a - \bar{x}_b = -0.33$
Standard deviation of the mean difference $= 3.698$
Effective number of degrees of freedom $\nu = 7.943$
The 0.95-quantile of a t-variate with 8 degrees of freedom $= 1.860$
The 90% confidence interval for the difference $= (-7.21, 6.54)$

- The confidence interval includes zero
 \Rightarrow the two systems are not different.

Example 13.7

- Times on System A: \{5.36, 16.57, 0.62, 1.41, 0.64, 7.26\}
 Times on system B: \{19.12, 3.52, 3.38, 2.50, 3.60, 1.74\}
 $t_{(0.95, 5)} = 2.015$
- The 90% confidence interval for the mean of A $= 5.31 \pm (2.015) \sqrt{(37.92/6)} = (0.24, 10.38)$
- The 90% confidence interval for the mean of B $= 5.64 \pm (2.015) \sqrt{(44.11/6)} = (0.18, 11.10)$
- Confidence intervals overlap and the mean of one falls in the confidence interval for the other. Two systems are not different at this level of confidence.

Approximate Visual Test

- CIs do not overlap \Rightarrow A is higher than B
- CIs overlap and mean of one is in the CI of the other \Rightarrow alternatives are not different

What Confidence Level To Use?

- Need not always be 90% or 95% or 99%
- Base on the loss that you would sustain if the parameter is outside the range and the gain you would have if the parameter is inside the range.
- Low loss \Rightarrow Low confidence level is fine
 E.g., lottery of 5 Million with probability 10^{-7}
- 90% confidence \Rightarrow buy nine million tickets
- 0.01% confidence level is fine.
- 50% confidence level may or may not be too low
- 99% confidence level may or may not be too high
Hypothesis Testing vs. Confidence Intervals

- Confidence interval provides more information
- Hypothesis test = yes-no decision
- Confidence interval also provides possible range
- Narrow confidence interval ⇒ high degree of precision
- Wide confidence interval ⇒ low precision
- Example: (-100,100) ⇒ No difference
 (-1,1) ⇒ No difference
- Confidence intervals tell us not only what to say but also how loudly to say it
- CI is easier to explain to decision makers
- CI is more useful.
 E.g., parameter range (100, 200) vs. Probability of (parameter = 110) = 3%

Example 13.8

- Time between crashes

<table>
<thead>
<tr>
<th>System</th>
<th>Number</th>
<th>Mean</th>
<th>Stdv</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>972</td>
<td>124.10</td>
<td>198.20</td>
</tr>
<tr>
<td>B</td>
<td>153</td>
<td>141.47</td>
<td>226.11</td>
</tr>
</tbody>
</table>

- Assume unpaired observations
- Mean difference:
 \(\bar{x}_A - \bar{x}_B = 124.10 - 141.47 = -17.37 \)
- Standard deviation of the mean difference:
 \(s = \sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}} = \sqrt{\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}} = 19.35 \)

Example 13.8 (Cont)

- Effective number of degrees of freedom:
 \(\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a-1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b-1} \left(\frac{s_b^2}{n_b}\right)^2} - 2 \)
 \(= \frac{(198.20)^2}{972} + \frac{(226.11)^2}{153} \)
 \(= 188.56 \)

- \(\nu > 30 \Rightarrow \text{Use } z \text{ rather than } t \)
- One sided test ⇒ Use \(z_{0.90} = 1.28 \) for 90% confidence
- 90% Confidence interval:
 \((-\infty, -17.37 + 1.28 \times 19.35) = (-\infty, 7.402) \)
- CI includes zero ⇒ System A is not more susceptible to crashes than system B.
Confidence Intervals for Proportions

- Proportion = probabilities of various categories
 E.g., P(error)=0.01, P(No error)=0.99
- n_1 of n observations are of type 1 \Rightarrow
 Sample proportion $p = \frac{n_1}{n}$
 Confidence interval for the proportion $p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$

- Assumes Normal approximation of Binomial distribution
 \Rightarrow Valid only if $np \geq 10$.
- Need to use binomial tables if $np < 10$
 Can't use t-values

CI for Proportions (Cont)

- 100(1-α)% one sided confidence interval for the proportion:
 $$\left(0, p + z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}\right)$$
 or $$\left(p - z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}, 1\right)$$

 Provided $np \geq 10$.

Example 13.9

- 10 out of 1000 pages printed on a laser printer are illegible.
 Sample proportion $p = \frac{10}{1000} = 0.01$
- $np \geq 10$
 Confidence interval $= p \pm z \sqrt{\frac{p(1-p)}{n}}$
 $= 0.01 \pm z \sqrt{\frac{0.01(0.99)}{1000}} = 0.01 \pm 0.003z$

 90% confidence interval = $0.01 \pm (1.645)(0.003)$
 = (0.005, 0.015)
 95% confidence interval = $0.01 \pm (1.960)(0.003)$
 = (0.004, 0.016)

Example 13.9 (Cont)

- At 90% confidence:
 0.5% to 1.5% of the pages are illegible
 Chances of error = 10%
- At 95% Confidence:
 0.4% to 1.6% of the pages are illegible
 Chances of error = 5%
Example 13.10

- 40 Repetitions on two systems: System A superior in 26 repetitions
- Question: With 99% confidence, is system A superior?
 \[p = \frac{26}{40} = 0.65 \]
- Standard deviation = \(\sqrt{p \times (1-p)/n} = 0.075 \)
- 99% confidence interval = 0.65 ± (2.576)(0.075) = (0.46, 0.84)
- CI includes 0.5, we cannot say with 99% confidence that system A is superior.
- 90% confidence interval = 0.65 ± (1.645)(0.075) = (0.53, 0.77)
- CI does not include 0.5, can say with 90% confidence that system A is superior.

Sample Size for Determining Mean

- Larger sample \(\Rightarrow \) Narrower confidence interval \(\Rightarrow \) Higher confidence
- Question: How many observations \(n \) to get an accuracy of \(r\% \) and a confidence level of 100(1-\(\alpha \))%?

\[x \pm z \frac{s}{\sqrt{n}} \]

\[CI = (\bar{x}(1-r/100), \bar{x}(1+r/100)) \]

\[\bar{x} \pm z \frac{s}{\sqrt{n}} = \bar{x} \left(1 \pm \frac{r}{100}\right) \]

\[\frac{z \cdot s}{\sqrt{n}} = \frac{r}{100} \]

\[n = \left(\frac{100z \cdot s}{r \Bar{x}}\right)^2 \]

Example 13.11

- Sample mean of the response time = 20 seconds
 Sample standard deviation = 5
 Question: How many repetitions are needed to get the response time accurate within 1 second at 95% confidence?
- Required accuracy = 1 in 20 = 5%
 Here, \(\bar{x} = 20, s = 5, z = 1.960, \) and \(r = 5, \)

\[n = \left(\frac{(100)(1.960)(5)}{(5)(20)}\right)^2 = (9.8)^2 = 96.04 \]

A total of 97 observations are needed.

Sample Size for Determining Proportions

Confidence interval for the proportion = \(p \pm z \sqrt{\frac{p(1-p)}{n}} \)

To get a half-width (accuracy of) \(r: \)

\[p \pm r = p \pm z \sqrt{\frac{p(1-p)}{n}} \]

\[r = z \sqrt{\frac{p(1-p)}{n}} \]

\[n = z^2 \frac{p(1-p)}{r^2} \]
Example 13.12

- Preliminary measurement: illegible print rate of 1 in 10,000.
- Question: How many pages must be observed to get an accuracy of 1 per million at 95% confidence?
- Answer:

\[
p = \frac{1}{10000} = 1E - 4, \quad r = 1E - 6, \quad z = 1.960
\]

\[
n = (1.960)^2 \left(\frac{10^{-4}(1 - 10^{-4})}{(10^{-6})^2} \right) = 384160000
\]

A total of 384.16 million pages must be observed.

Example 13.13

- Algorithm A loses 0.5% of packets and algorithm B loses 0.6%.
- Question: How many packets do we need to observe to state with 95% confidence that algorithm A is better than the algorithm B?
- Answer:

\[
\text{CI for algorithm A} = 0.005 \pm 1.960 \left(\frac{0.005(1 - 0.005)}{n} \right)^{1/2}
\]

\[
\text{CI for algorithm B} = 0.006 \pm 1.960 \left(\frac{0.006(1 - 0.006)}{n} \right)^{1/2}
\]

Example 13.13 (Cont)

- For non-overlapping intervals:

\[
0.005 \pm 1.960 \left(\frac{0.005(1 - 0.005)}{n} \right)^{1/2}
\]

\[
\leq 0.006 \pm 1.960 \left(\frac{0.006(1 - 0.006)}{n} \right)^{1/2}
\]

- \(n = 84340 \) ⇒ We need to observe 85,000 packets.

Summary

- All statistics based on a sample are random and should be specified with a confidence interval.
- If the confidence interval includes zero, the hypothesis that the population mean is zero cannot be rejected.
- Paired observations ⇒ Test the difference for zero mean.
- Unpaired observations ⇒ More sophisticated test.
- Confidence intervals apply to proportions too.
Homework 13B: Exercise 13.3 (Revised)

- For the code size data of Table 11.2, find 90% confidence intervals for the average code sizes on each processor. Answer the following for RISC-I and Z8002:
 - At what level of significance, can you say that one is better than the other?
 - How many workloads would you need to decide the superiority at 90% confidence? (Compute n to avoid zero in the confidence interval.)