CSE 567M: Computer Systems Analysis also known as Experimental Data Analysis

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/cse567-17/

Overview

- Goal of this Course
- Contents of the course
- Tentative Schedule
- Project
- Grading

Goal of This Course

- Comprehensive course on analysis any system, algorithm, or component
- Includes measurement, statistical modeling, experimental design, simulation, and queuing theory
- How to avoid common mistakes in performance analysis
- Graduate course: (Advanced Topics)
 ⇒ Lot of independent reading and writing
 ⇒ Project/Survey paper (Research techniques)

Text Book

Objectives: What You Will Learn

- Specifying performance requirements
- Evaluating design alternatives
- Comparing two or more systems
- Determining the optimal value of a parameter (system tuning)
- Finding the performance bottleneck (bottleneck identification)
- Characterizing the load on the system (workload characterization)
- Determining the number and sizes of components (capacity planning)
- Predicting the performance at future loads (forecasting).

Main Parts of the Course

- Part I: An Overview of Performance Evaluation
- Part II: Measurement Techniques and Tools
- Part III: Probability Theory and Statistics
- Part IV: Experimental Design and Analysis
- Part V: Simulation
- Part VI: Queueing Theory
- Part VII: Stochastic Processes

Basic Terms

- **System**: Any collection of hardware, software, and firmware
- **Metrics**: Criteria used to evaluate the performance of the system's components.
- **Workloads**: The requests made by the users of the system.

Part I: An Overview of Performance Evaluation

- Introduction
- Common Mistakes and How To Avoid Them
- Selection of Techniques and Metrics
Example I

- What performance metrics should be used to compare the performance of the following systems:
 - Two disk drives?
 - Two transaction-processing systems?
 - Two packet-retransmission algorithms?

Example II

- Which type of monitor (software or hardware) would be more suitable for measuring each of the following quantities:
 - Number of Instructions executed by a processor?
 - Degree of multiprogramming on a timesharing system?
 - Response time of packets on a network?
Example III

- The number of packets lost on two links was measured for four file sizes as shown below:

<table>
<thead>
<tr>
<th>File Size</th>
<th>Link A</th>
<th>Link B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>1200</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1300</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Which link is better?

Part IV: Experimental Design and Analysis

- Introduction to Experimental Design
- 2^k Factorial Designs
- 2^{kr} Factorial Designs with Replications
- 2^{k-p} Fractional Factorial Designs
- One Factor Experiments
- Two Factors Full Factorial Design without Replications
- Two Factors Full Factorial Design with Replications
- General Full Factorial Designs With k Factors

Example IV

- The performance of a system depends on the following three factors:
 - Garbage collection technique used: G1, G2, or none.
 - Type of workload: editing, computing, or AI.
 - Type of CPU: C1, C2, or C3.

How many experiments are needed? How does one estimate the performance impact of each factor?

Part V: Simulation

- Introduction to Simulation
- Types of Simulations
- Model Verification and Validation
- Analysis of Simulation Results
- Random-Number Generation
- Testing Random-Number Generators
- Random-Variate Generation
- Commonly Used Distributions
Example V

In order to compare the performance of two cache replacement algorithms:
- What type of simulation model should be used?
- How long should the simulation be run?
- What can be done to get the same accuracy with a shorter run?
- How can one decide if the random-number generator in the simulation is a good generator?

Example VI

The average response time of a database system is three seconds. During a one-minute observation interval, the idle time on the system was ten seconds. Using a queueing model for the system, determine the following:
- System utilization
- Average service time per query
- Number of queries completed during the observation interval
- Average number of jobs in the system
- Probability of number of jobs in the system being greater than 10
- 90-percentile response time
- 90-percentile waiting time

Part VI: Queueing Theory

- Introduction to Queueing Theory
- Analysis of A Single Queue
- Queueing Networks
- Operational Laws
- Mean Value Analysis and Related Techniques
- Convolution Algorithm
- Advanced Techniques

Part VII: Stochastic Processes

- What are different types of time series models?
- How do you fit a model to a series?
- How do you model a series that has a periodic or seasonal behavior as is common in video streaming?
- What are heavy-tailed distributions and why they are important?
- How to check if a sample of observations has a heavy tail?
- What are self-similar processes?
- What are short-range and long-range dependent processes?
- Why does long-range dependence invalidate many conclusions based on previous statistical methods?
- How do you check if a sample has a long-range dependence?
Example VII

- What is the right model for the following measurements on # of disk accesses

![Graph showing number of disk accesses over time](image)

The Art of Performance Evaluation

- Given the same data, two analysts may interpret them differently.

Example:

- The throughputs of two systems A and B in transactions per second is as follows:

<table>
<thead>
<tr>
<th></th>
<th>Workload 1</th>
<th>Workload 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>System A</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>System B</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Possible Solutions

- Compare the average:

<table>
<thead>
<tr>
<th>System</th>
<th>Workload 1</th>
<th>Workload 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

Conclusion: The two systems are equally good.

- Compare the ratio with system B as the base

<table>
<thead>
<tr>
<th>System</th>
<th>Workload 1</th>
<th>Workload 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>0.5</td>
<td>1.25</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Conclusion: System A is better than B.

Solutions (Cont)

- Compare the ratio with system A as the base

<table>
<thead>
<tr>
<th>System</th>
<th>Workload 1</th>
<th>Workload 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>2</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Conclusion: System B is better than A.

- Similar games in: Selection of workload, Measuring the systems, Presenting the results.

- Common mistakes will also be discussed.
Grading
- Exams (Best of 2 mid terms + Final) 60%
- Class participation 5%
- Homeworks 15%
- Project 20%

Prerequisites
- CSE 131: Computer Science I
- CSE 126: Introduction To Computer Programming
- CSE 260M: Introduction To Digital Logic And Computer Design (Not required)
- Basic Probability and Statistics
- Matrix multiplication and inversion

Prerequisite
- Statistics:
 - Mean, variance
 - Normal distribution
 - Density function, Distribution function
 - Coefficient of variation
 - Correlation coefficient
 - Median, mode, Quantile
- Programming

Tentative Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/29/17</td>
<td>Course Introduction</td>
<td></td>
</tr>
<tr>
<td>8/31/17</td>
<td>Common Mistakes</td>
<td>2</td>
</tr>
<tr>
<td>9/5/17</td>
<td>Selection of Techniques and Metrics</td>
<td>3</td>
</tr>
<tr>
<td>9/7/17</td>
<td>Summarizing Measured Data</td>
<td>12</td>
</tr>
<tr>
<td>9/12/17</td>
<td>Comparing Systems Using Random Data</td>
<td>13</td>
</tr>
<tr>
<td>9/14/17</td>
<td>Simple Linear Regression Models</td>
<td>14</td>
</tr>
<tr>
<td>9/19/17</td>
<td>Other Regression Models</td>
<td>15</td>
</tr>
<tr>
<td>9/21/17</td>
<td>Experimental Designs</td>
<td>16</td>
</tr>
<tr>
<td>9/26/17</td>
<td>Mid-Term Exam 1</td>
<td></td>
</tr>
</tbody>
</table>
Tentative Schedule (Cont)

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/28/17</td>
<td>2**k Experimental Designs</td>
<td>17</td>
</tr>
<tr>
<td>10/3/17</td>
<td>Factorial Designs with Replication</td>
<td>18</td>
</tr>
<tr>
<td>10/5/17</td>
<td>Fractional Factorial Designs</td>
<td>19</td>
</tr>
<tr>
<td>10/10/17</td>
<td>One Factor Experiments</td>
<td>20</td>
</tr>
<tr>
<td>10/12/17</td>
<td>Two Factor Full Factorial Design w/o Replications</td>
<td>21</td>
</tr>
<tr>
<td>10/17/17</td>
<td>Two Factor Full Factorial Designs with Replications</td>
<td>22</td>
</tr>
<tr>
<td>10/19/17</td>
<td>General Full Factorial Designs</td>
<td>23</td>
</tr>
<tr>
<td>10/24/17</td>
<td>Introduction to Queueing Theory</td>
<td>30</td>
</tr>
<tr>
<td>10/26/17</td>
<td>Analysis of Single Queue</td>
<td>31</td>
</tr>
<tr>
<td>10/31/17</td>
<td>Mid-Term Exam 2</td>
<td></td>
</tr>
<tr>
<td>11/2/17</td>
<td>Queueing Networks</td>
<td>32</td>
</tr>
<tr>
<td>11/7/17</td>
<td>Operational Laws</td>
<td>33</td>
</tr>
<tr>
<td>11/9/17</td>
<td>Mean-Value Analysis</td>
<td>34</td>
</tr>
<tr>
<td>11/14/17</td>
<td>Time Series Analysis</td>
<td>37</td>
</tr>
<tr>
<td>11/16/17</td>
<td>Heavy Tailed Distributions, Self-Similar Processes, and Long-Range Dependence</td>
<td>38</td>
</tr>
<tr>
<td>11/21/17</td>
<td>Random Number Generation</td>
<td>26</td>
</tr>
<tr>
<td>11/23/17</td>
<td>Thanks Giving Break</td>
<td></td>
</tr>
<tr>
<td>11/28/17</td>
<td>Analysis of Simulation Results</td>
<td>34</td>
</tr>
<tr>
<td>11/30/17</td>
<td>Art of Data Presentation</td>
<td>10</td>
</tr>
<tr>
<td>12/5/17</td>
<td>Clustering Techniques</td>
<td></td>
</tr>
<tr>
<td>12/7/17</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>

Projects

- A survey paper on a performance topic
 - Comparison of Measurement, Modeling, Simulation, Analysis Tools: NS2
 - Comprehensive Survey: Technical Papers, Industry Standards, Products
- A real case study on performance of a system you are already working on
- Average 6 Hrs/week/person on project + 9 Hrs/week/person on class
- Recent Developments: Last 2 to 4 years ⇒ Not in books
- Better ones may be submitted to magazines or journals

Projects (Cont)

- **Goal:** Provide an insight (or information) not obvious before the project.
- **Real Problems:** Thesis work, or job
- **Homeworks:** Apply techniques learnt to your system.
Example of Previous Case Studies

- Performance of Google App Engine and Amazon Web Service
- Availability and Sensitivity of Smart Grid Components
- Modeling and Analysis Issues in x86-based Hypervisors
- Image Sensor Performance
- Performance of Solving Laplace's Equation using Auto-Pipe
- Performance Modeling of Multi-core Processors
- Performance of Named Data Networking
- A Measurement Study of Packet Reception using Linux
- Performance Analysis of Robotics Systems
- Performance and Measurement Issues of Smart Phones Design
- Analysis of Online Social Networks
- Measurement Study on the BitTorrent File Distribution System
- A Survey of Wireless Sensor Network Simulation Tools

Office Hours

- Tuesday/Thursday: 11 AM to 12 noon
- Office: Jolley 208
- Teaching Assistant:
 - Maede Zolanvari, maede.zolanvari@wustl.edu
 - Office Hours: Monday/Friday 1-2PM
 - Jolley 323

Exams

- Exams consist of numerical, fill-in-the-blank and multiple-choice (true-false) questions.
- There is negative grading on incorrect multiple-choice questions. Grade: +1 for correct. -1/(n-1) for incorrect.
 ⇒ For True-False: +1 for Correct, -1 for Incorrect
 This ensures that random marking will produce an average of 0.
- Everyone including the graduating students are graded the same way.
- Highest score achieved becomes 100% for that exam.

Project Schedule

- Tue 10/03 Topic Selection
- Tue 10/10 References Due
- Tue 10/17 Outline Due
- Tue 11/07 First Draft Due → Peer reviewed
- Tue 11/14 Reviews Returned
- Tue 11/21 Final Report Due
Exams (Cont)

- All exams are closed book.
 One 8.5”X11” cheat sheet with your notes on both sides is allowed.
- No smart phones allowed.
 Only simple TI-30 or equivalent calculator allowed for calculations.
- Exam dates are fixed and there are no substitute exams
 ⇒ Plan your travel accordingly.
- Best of the two mid-terms is used.

Homework Submission

- All homeworks are due on the following Tuesday at the beginning of the class unless specified otherwise.
- Any late submissions, if allowed, will *always* have a penalty.
- All homeworks should be submitted in hardcopy
- All homeworks are identified by the class handout number.
- All homeworks should be on a separate sheet.
 Your name should be on every page.
- Please write CSE567 in the subject field of all emails related to this course.
- Use word “Homework” in the subject field on emails related homework. Also indicate the homework number.
- The first page of all homeworks submitted should be blank with only your name on the top-right corner

Homework Grading

- Grading basis: Method + Correct answer
- Show how you got your answer
 ➢ Show intermediate calculations.
 ➢ Show equations or formulas used.
 ➢ If you use a spreadsheet, a statistical package, or write a program, print it out and turn it in with the homework.
 ➢ For Excel, set the print area and scale the page accordingly to fit to a page. (See Page Setup)

Quizzes

- There may be a short 5-minute quiz at the beginning of each class to check if you have read the topics covered in the last class.
Academic Integrity

- Academic integrity is expected in homeworks.
- All solutions submitted are expected to be yours and not copied from others or from solution manuals or from Internet.
- All integrity violations will be reported to the department and action taken.

Class Discussions

- We will use Piazza for class discussion.
- Find our class page at:
 https://piazza.com/wustl/fall2017/cse567m/home
- You can sign up at:
 https://piazza.com/wustl/fall2017/cse567m

Summary

- Goal: To prepare you for correct analysis and modeling of any system.
- There will be a self-reading and writing.
- Get ready to work hard.

Quiz 0: Prerequisites

True or False?
T F

- The mean of uniform(0,1) variates is 1.
- The sum of two normal variates with means 4 and 3 has a mean of 7.
- The probability of a fair coin coming up head once and tail once in two throws is 1.
- The density function f(x) approaches 1 as x approaches f.
- Given two variables, the variable with higher median also has a higher mean.
- The probability of a fair coin coming up heads twice in a row is 1/4.
- The difference of two normal variates with means 4 and 3 has a mean of 4/3.
- The cumulative distribution function F(x) approaches 1 as x approaches ∞.
- High coefficient of variation implies a high variance and vice versa.
- If x is 0, then after x++, x will be 1.

Marks = Correct Answers _____ - Incorrect Answers _____ = ______

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),
https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0hWmVzZcof

CSE473S: Introduction to Computer Networks (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMb8Azzy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),
https://www.youtube.com/playlist?list=PLjGG94etKypKeb0uzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVturHePFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Student Questionnaire

- Name: ________________________________
- Email: ________________________________
- Phone: ________________________________
- Degree: __________ Expected Date:________
- Technical Interest Area(s):

- Prior probability/statistics related courses/activities:

- Prior computer systems related courses (Max 5):

