Introduction to Heavy-Tailed Distributions, Self-Similar Processes, and Long-Range Dependence

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/cse567-15/
Overview

1. Heavy-Tailed Distributions (HTDs)
2. How to Check for Heavy Tail?
3. Self-Similar Processes
4. Long Range Dependence (LRD)
5. Generating LRD Sequences
6. Self-Similarity vs. LRD
7. Hurst Exponent Estimation

Heavy-Tailed Distributions (HTDs)

- CCDF decays slower than the exponential distribution
 \[P(X > x) = 1 - F(x) = \bar{F}(x) = e^{-\lambda x} \]
- CCDF = Complementary cumulative distribution function
 \[\bar{F}(x) = 1 - F(x) \]
- For heavy tailed distributions, CCDF is slower by some power of \(x \)
 \[\bar{F}(x) \rightarrow cx^n e^{-\lambda x} \]
- Very large values possible
Examples of HTD Variables

- Many real-world phenomenon have been found to follow heavy tailed distributions.
 - Distribution of wealth. One percent of the population owns 40% of wealth.
 - File sizes in computer systems
 - Connection durations
 - CPU times of jobs
 - Web pages sizes
- Significant impact on buffer sizing in switches and routers.
Example 38.1

- Weibull distribution

\[F(x) = 1 - e^{-(x/a)^b} \quad a > 0, b > 0 \]

\[\lim_{x \to \infty} \frac{x^n e^{-\lambda x}}{1 - F(X)} = \frac{x^n e^{-\lambda x}}{e^{-(x/a)^b}} = e^{((x/a)^b - \lambda x) + n \ln x} = 0 \text{ for } 0 < b < 1 \]

- Other examples of heavy tailed distributions are Cauchy, log-normal, and t-distributions.
Power Tailed Distributions

- A subset of heavy tailed distributions
 \[
 \bar{F}(x) \Rightarrow \frac{c}{x^\alpha}
 \]

- CCDF approaches a power function for large \(x\)
 - For such distributions:
 - all moments \(E[x^l]\) for all values of \(l \geq \alpha\) are infinite.
 - If \(\alpha \leq 2\), \(x\) has infinite variance
 - If \(\alpha \leq 1\), the variable has infinite mean
 - \(\alpha\) is called the tail index.

- All power tailed distributions are heavy tailed but all heavy tailed distributions are not power tailed.
Example 38.2

- Pareto distribution:
 \[F(x) = 1 - x^{-\alpha} \quad 1 \leq x \leq \infty, \alpha > 0 \]
 \[\bar{F}(x) = 1 - F(X) = \frac{1}{x^\alpha} \]

- pdf: \[f(x) = \frac{d}{dx} F(x) = \alpha x^{-\alpha-1} \]

- It's \(l \)th moment is:
 For \(l \neq \alpha \):
 \[E[x^l] = \int_1^\infty x^l f(x) \, dx = \int_1^\infty \alpha x^{l-\alpha-1} \, dx = \frac{\alpha}{l-\alpha} x^{l-\alpha} \bigg|_1^\infty = \begin{cases} \infty & l > \alpha \\ \frac{\alpha}{\alpha-l} & l < \alpha \end{cases} \]
 For \(l = \alpha \):
 \[E[x^l] = \int_1^\infty \alpha x^{-1} \, dx = \alpha \ln x \bigg|_1^\infty = \infty \]

- All moments for \(l \geq \alpha \) are infinite.

- For \(2 \geq \alpha > 1 \) variance and higher moments are infinite.
 - For \(1 \geq \alpha \) variance does not exist.

- For \(1 \geq \alpha > 0 \), even mean is infinite.
Effect of Heavy Tail

- A random variable with HTD can have very large values with finite probabilities resulting in many outliers.
- Sampling from such distributions results in mostly small values with a few very large valued samples.
- Sample statistics (e.g., sample mean) may have a large variance \(\Rightarrow \) sample sizes required for a meaningful confidence are large.
- Sample mean generally under-estimates the population mean.
- Simulations with heavy-tailed input require very long time to reach steady state and even then the variance can be large.

\[
| \bar{x}_n - \mu | \approx cn^{\frac{1}{\alpha} - 1}
\]

\(c \) is some constant.
Effect of Heavy Tail (Cont)

- The number of observations required to reach k-digit accuracy:
 \[
 \frac{|\bar{x}_n - \mu|}{\mu} \leq 10^{-k} \quad \frac{c\mu \frac{1}{\alpha} - 1}{\mu} \leq 10^{-k} \quad n \geq 10^{\frac{\log(c/\mu) + k}{1 - \frac{1}{\alpha}}} \]

- Assuming $c=1$, $\mu=1$, 10^{11} observations are required for a single decimal digit accuracy ($k=1$) if $\alpha=1.1$.

- Central limit theorem applies only to observations from distributions with finite variances.
 - For heavy-tailed distributions with infinite variance, the central limit theorem does not apply.
 - The sample mean does not have a normal distribution even after a large number of samples.
 - Confidence interval formulas mentioned earlier can not be used.
Effect of Heavy Tail (Cont)

- **M/PT/1 queue**: Poisson arrivals and power-tailed service time
 - pdf of queue length \(f(n) \rightarrow c(\rho)/n^{\alpha} \)
 where \(c(\rho) \) is a function of the traffic intensity \(\rho \).
 - If \(\alpha \leq 1 \), the mean service time is infinite and so are the traffic intensity and the mean queue length.
 - If \(\alpha \leq 2 \), the service time has infinite variance, and so does the queue length.

- **PT/M/1 queue**:
 - Tail index \(\alpha \leq 1 \), the mean inter-arrival time is infinite.
 - For \(1 < \alpha \leq 2 \), the variance of the inter-arrival time is infinite.

- Heavy tailed-ness also implies **predictability**:
 - If a heavy tailed task has run a long time, it is expected to run for an additional long time.
 \[
 \lim_{x \to \infty} E[X - x | X > x] = \infty
 \]
How to Check for Heavy Tail?

- Make a Q-Q plot on a log-log graph assuming a Pareto distribution

\[F(x) = 1 - x^{-\alpha} \quad x = (1 - F)^{-1/\alpha} \]

- On a log-log graph: \(\ln x = (-1/\alpha) \ln (1 - F) \)

- Find \(\alpha \) from the slope of the best-fit line. \(\alpha \geq 1 \Rightarrow \text{Heavy Tailed} \)
Example 38.3

Check if this set of 50 observations has a heavy tail: 2.426, 1.953, 1.418, 1.080, 3.735, 2.307, 1.876, 1.110, 3.131, 1.134, 1.171, 1.141, 2.181, 1.007, 1.076, 1.131, 1.156, 2.264, 2.535, 1.001, 1.099, 1.149, 1.225, 1.099, 1.279, 1.052, 1.051, 9.421, 1.346, 1.532, 1.000, 1.106, 1.126, 1.293, 1.130, 1.043, 1.254, 1.118, 1.027, 1.383, 1.288, 1.988, 1.561, 1.106, 1.256, 1.187, 1.084, 1.968, 1.045, 1.155

\[-\ln(1 - q_i) \]

\[\ln(x_i) \]
Example 38.3 (Cont)

<table>
<thead>
<tr>
<th>x_i</th>
<th>Rank R_i</th>
<th>Quantile $q_i = \frac{R_i - 0.5}{n}$</th>
<th>$-\ln(1 - q_i)$</th>
<th>$\ln(x_i)$</th>
<th>$-\ln(1 - q_i) \times \ln(x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.426</td>
<td>46</td>
<td>0.910</td>
<td>0.886</td>
<td>2.408</td>
<td>2.134</td>
</tr>
<tr>
<td>1.953</td>
<td>40</td>
<td>0.790</td>
<td>0.669</td>
<td>1.561</td>
<td>1.044</td>
</tr>
<tr>
<td>1.418</td>
<td>36</td>
<td>0.710</td>
<td>0.349</td>
<td>1.238</td>
<td>0.432</td>
</tr>
<tr>
<td>1.080</td>
<td>10</td>
<td>0.190</td>
<td>0.077</td>
<td>0.211</td>
<td>0.016</td>
</tr>
<tr>
<td>1.735</td>
<td>49</td>
<td>0.970</td>
<td>1.318</td>
<td>3.507</td>
<td>4.620</td>
</tr>
<tr>
<td>1.307</td>
<td>45</td>
<td>0.890</td>
<td>0.836</td>
<td>2.207</td>
<td>1.845</td>
</tr>
<tr>
<td>1.876</td>
<td>39</td>
<td>0.770</td>
<td>0.629</td>
<td>1.470</td>
<td>0.925</td>
</tr>
<tr>
<td>1.110</td>
<td>16</td>
<td>0.310</td>
<td>0.105</td>
<td>0.371</td>
<td>0.039</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.084</td>
<td>11</td>
<td>0.210</td>
<td>0.236</td>
<td>0.081</td>
<td>0.019</td>
</tr>
<tr>
<td>1.968</td>
<td>41</td>
<td>0.810</td>
<td>1.661</td>
<td>0.677</td>
<td>1.124</td>
</tr>
<tr>
<td>1.045</td>
<td>6</td>
<td>0.110</td>
<td>0.117</td>
<td>0.044</td>
<td>0.005</td>
</tr>
<tr>
<td>1.155</td>
<td>24</td>
<td>0.470</td>
<td>0.635</td>
<td>0.144</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Sum	17.308	49.654	37.006
Sum of Squares	14.781	95.774	164.977
Average	0.346	0.993	0.740
Example 38.3 (Cont)

\[b_1 = \frac{\sum xy - n\bar{xy}}{\sum x^2 - n\bar{x}^2} \]

\[
\frac{1}{\alpha} = \frac{37.006 - 50(0.346)(0.993)}{95.774 - 50(0.993)^2} = \frac{37.006 - 17.188}{95.774 - 49.311} = \frac{19.818}{46.463} = 0.427
\]

\[
\alpha = 2.34
\]
Exercise 38.6

Check if the following set of 50 observations has a power tail:
2.24, 1.67, 1.86, 1.12, 1.31, 1.63, 1.83, 7.87, 34.75, 4.24, 1.60,
2.51, 1.67, 8.04, 1.81, 5.47, 2.85, 2.05, 4.51, 1.85, 6.15, 1.86,
3.47, 2.84, 11.71, 3.02, 12.88, 1.36, 2.10, 18.85, 1.17, 31.43,
5.70, 1.76, 1.04, 1.29, 1.24, 2.50, 1725.34, 28.14, 1.43, 4.06,
1.56, 3.77, 1.00, 3.03, 118.59, 5.40, 1.01, 1.38
Self-Similarity

- When zoomed, the sub objects have the same shape as the original object
- Also called Fractals
- Latin “fractus” = “fractional” or “broken”
 ⇒Traditional Euclidean geometry can not be used to analyze these objects because their perimeter is infinite.
Self-Similar Processes

- Scaling in time = scaling in magnitude
 \[x_{at} \sim a^H x_t \quad \forall a > 0 \]

- Statistical similarity \(\Rightarrow \) Similar distributions with similar mean and variance
 \[
 E[x_{at}] = a^H E[x_t] \\
 \text{Var}[x_{at}] = a^{2H} \text{Var}[x_t]
 \]

 - Similar variance \(\Rightarrow \) Self-similar in the second order
 - Similar higher order moments \(\Rightarrow \) Self-similarity of higher orders
 - All moments similar \(\Rightarrow \) strictly self-similar.
Example 38.4

- Consider the white noise process e_t with zero mean and unit variance: $e_t = z \sim N(0, 1)$
 Here z is the unit normal variate.

- Consider the process x_t: $x_t = t^H e_t = t^H z$

- For this process:
 $$x_{at} = (at)^H z = a^H t^H z = a^H x_t$$
 Therefore, x_t is a self-similar process.

- $H = \text{Hurst exponent}$

- Harold Edwin Hurst, a hydrologist, who was studying optimum dam sizing for reservoirs along Nile River in Egypt.
Short Range Dependence (SRD)

- Sum of Autocorrelation function is finite.
- Example 38.5: AR(1) with zero mean:
 \[x_t = a_1 x_{t-1} + e_t \]

 - For this process, the autocorrelation function decreases exponentially:
 \[Cor[x_t, x_{t-k}] = r_k = a_1^{|k|} \]

 - Sum of autocorrelations is finite (provided \(|a_1| < 1\)):
 \[\sum_{k=0}^{\infty} r_k = \frac{1}{1 - a_1} \]
Long Range Dependence (LRD)

- Sum of Autocorrelation function is infinite \[\sum r_k = \infty \]

 Alternative Definition:

- Limiting tail behavior of the autocorrelation:
 \[r(k) \to k^{2H-2}L(k) \quad k \to \infty \]

Here, \(L(x) \) is a *slowly varying function* of \(x \).

\(L(ax)/L(x) \) tends to 1 as \(x \) approaches infinity.

Constants and logarithms are examples of slowly varying functions.
Examples of Processes with LRD

- Aggregation of a large number of on-off processes with heavy-tailed on-times or heavy-tailed off times results in long-range dependence.

- File sizes have a long-tailed distribution ⇒ Internet traffic has a long range dependence.

- Connection durations have also been found to have a heavy-tailed distribution ⇒ traffic has a long range dependence

- UNIX processes have been found to have a heavy-tailed distribution ⇒ resource demands have LRD

- Congestion and feedback control mechanisms such as those used in Transmission Control Protocol (TCP) increase the range of dependence in the traffic.
Effect of Long Range Dependence

- Long-range dependence invalidates all results for queueing theory obtained using Poisson processes, e.g., Buffer sizes required to avoid overflow may be off by thousands times.
Self-Similarity vs. LRD

- Self-similarity ≠ Long-range dependence
- Self-similar process can be short-range dependent or long-range dependent
- Self-similar processes with $\frac{1}{2} < H < 1$ have long range dependence.
- Self-similar processes with $0 < H \leq \frac{1}{2}$ have short range dependence.
- ARIMA(p, d, q) with integer valued d are SRD.
- FARIMA(p, d+\delta, q) with $0 < \delta < \frac{1}{2}$ have long-range dependence.
FARIMA Models and LRD

- Fractional Auto-regressive Integrated Moving Average (FARIMA) processes exhibit LRD for certain values of d.
- Consider FARIMA(0, 0.25, 0): $(1 - B)^{0.25} x_t = e_t$

$$x_t = (1 - B)^{-0.25} e_t$$

$$= e_t - (-0.25)e_{t-1} + \frac{-0.25(-0.25 - 1)}{(1)(2)} e_{t-2} + \frac{-0.25(-0.25 - 1)(-0.25 - 2)}{(1)(2)(3)} e_{t-3} + \cdots$$

$$= e_t + 0.25e_{t-1} + \frac{0.25(0.25 + 1)}{(1)(2)} e_{t-2} + \frac{0.25(0.25 + 1)(0.25 + 2)}{(1)(2)(3)} e_{t-3} + \cdots$$

$$= e_t + 0.25e_{t-1} + 0.16e_{t-2} + 0.12e_{t-3} + 0.10e_{t-4} + \cdots + 0.04e_{t-10}$$

The coefficient of e_{t-k} is $\frac{0.25(0.25 + 1) \cdots (0.25 + k - 1)}{(1)(2) \cdots (k)} = \frac{\Gamma(0.25 + k)}{\Gamma(0.25)\Gamma(k + 1)}$

Here, $\Gamma()$ is the Gamma function: $\Gamma(p + 1) = p\Gamma(p)$

It is a generalization of factorial. For integer p, $\Gamma(p + 1) = p!$

For example, $\Gamma(3) = 2$, $\Gamma(2) = 1$, $\Gamma(1) = 1$, $\Gamma(0) = \infty$
Consider FARIMA(0, δ, 0) with $-1/2 < \delta < 1/2$ and $\delta \neq 0$.

$$x_t = (1 - B)^{-\delta}e_t = \sum_{k=0}^{\infty} b_k e_{t-k}$$

Where:

$$b_k = \frac{\Gamma(k + \delta)}{\Gamma(\delta) \Gamma(k + 1)}$$

Since e_t is Gaussian, x_t is also Gaussian.

e_t is Gaussian Noise, x_t is fractional Gaussian Noise (fGn)
The autocovariance of the FARIMA(0,\(\delta\),0) sequence is:

\[
E[x_t x_{t-k}] = \begin{cases}
\sigma^2 \frac{\Gamma(1-2\delta)}{\Gamma^2(1-\delta)} & k = 0 \\
\sigma^2 \frac{\Gamma(k+\delta)\Gamma(1-2\delta)}{\Gamma(k-\delta+1)\Gamma(\delta)\Gamma(1-\delta)} & k \neq 0
\end{cases}
\]

Autocorrelation at lag \(k\):

\[
r_k = \frac{\Gamma(k+\delta)\Gamma(1-\delta)}{\Gamma(k-\delta+1)\Gamma(\delta)}
\]

Stirling’s approximation:

\[
\Gamma(p+1) \approx \sqrt{2\pi p} \left(\frac{p}{e}\right)^p
\]

For large \(k\), \(r_k\) tends to \(c|k|^{2\delta-1}\) where

\[
c = \frac{\Gamma(1-\delta)}{\Gamma(\delta)}
\]

Recall that for LRD:

\[
r(k) \to k^{2H-2}L(k) \quad k \to \infty
\]

\(\Rightarrow 2H-2=2\delta-1\), that is, \(H=\delta+1/2\).

\(\Rightarrow\) A FARIMA(0,\(\delta\),0) sequence has LRD if \(0<\delta<1/2\).
Generating LRD Sequences

- Generate the FARIMA(p, d+\delta, q) LRD sequence
- FARIMA(p, d+\delta, q) = ARIMA(p, d, q) with e_t replaced by fractional Gaussian noise generated by FARIMA(0, \delta, 0)
- ARIMA(p,d,q) is given by
 \[\phi(B)(1 - B)^d x_t = a_0 + \psi(B) e_t \]
- It can be generated by one of the following two methods:
 1. Using previous values of x_t:
 \[x_t = a_0 + (1 - \phi(B)(1 - B)^d) x_t + \psi(B) e_t \]
Generating LRD Sequences (Cont)

2. Converting the model to a moving average model using a Taylor series expansion:

\[
x_t = \frac{\psi(B)}{\phi(B)(1-B)^d} \epsilon_t = \left(\sum_{i=0}^{m} c_i B^i \right) \epsilon_t = \sum_{i=0}^{m} c_i \epsilon_{t-i}
\]

Here \(c_i \) are coefficients of the Taylor series expansion and \(m \) is selected large enough so that \(c_i \) for \(i > m \) are negligible.

- Generate a white noise sequence \(\epsilon_i \sim N(0, 1) \)
- Generate a FARIMA\((0, \delta, 0)\) sequence \(y_i \) using a moving average of a large number \(m \) of \(\epsilon_i \):

\[
y_i = \sum_{k=0}^{m} \frac{\Gamma(k + \delta)}{\Gamma(k + 1)\Gamma(\delta)} \epsilon_{i-k}
\]
Generating LRD Sequences (Cont)

- Generate a FARIMA(p, d+\(\delta\), q) sequence \(x_i\) by generating a usual ARIMA(p, d, q) as in Step 1 above with the white noise \(e_i\) replaced by \(y_i\)

\[
x_t = a_0 + \frac{\psi(B)}{\phi(B)(1 - B)^d} y(i)
\]

- \(m=100\) or \(m=1000\) has been found to provide good results.
Example 38.6

- Generate a FARIMA(0,0.25,0) Sequence

\[x_t = (1 - B)^{-0.25} e_t \]

\[= e_t + 0.25 e_{t-1} + \frac{0.25(0.25 + 1)}{2} e_{t-2} + \frac{0.25(0.25 + 1)(0.25 + 2)}{6} e_{t-3} + \cdots \]

\[= e_t + 0.25 e_{t-1} + 0.16 e_{t-2} + 0.12 e_{t-3} + 0.10 e_{t-4} + \cdots + 0.04 e_{t-10} \]

- Generate 60 N(0,1) random numbers for \(e_9 \) thru \(e_{50} \)

The numbers are: 0.376, 0.789, -0.629, 0.102, 0.240, -0.909, 0.706, 0.019, -0.646, -2.030, -0.140, -1.816, 1.373, -0.723, -1.486, -0.984, -0.392, -0.323, 0.214, 0.652, -0.148, 0.499, -0.226, -1.878, 0.975, 0.273, -0.080, 0.040, 1.607, -0.154, -0.601, -0.468, 0.199, 1.129, 0.299, 1.332, -0.760, 0.980, -0.134, 1.378, -1.059, 0.364, -0.715, 0.769, -1.671, -0.346, 0.195, 0.157, -0.038, -1.253, -0.773, -0.910, 0.304, 1.146, 1.630, 0.578, 1.349, 0.615, -0.396
Example 38.6 (Cont)

- Use the above equation to get x_1 through x_{50}
- The numbers are: -2.16, -0.77, -2.23, 0.61, -0.93, -1.85, -1.68, -1.15, -0.96, -0.27, 0.33, -0.18, 0.32, -0.23, -1.90, 0.54, 0.27, -0.02, 0.04, 1.58, 0.23, -0.43, -0.48, 0.19, 1.16, 0.60, 1.61, -0.23, 1.08, 0.22, 1.63, -0.48, 0.51, -0.51, 0.74, -1.53, -0.63, -0.10, 0.01, -0.19, -1.35, -1.19, -1.36, -0.29, 0.87, 1.70, 0.97, 1.70, 1.18, 0.20

- Note:
 1. $m = 10$ is used for illustration only. Need to use $m = 1000$
 2. A sample of 50 observations is too small to study long-range dependence.
Exercise 38.9

- Generate a sample of 50 observations for a long-range dependent process with a Hurst exponent of 0.65. Use the following sequence of 60 unit normal variates: 0.24, -0.91, 0.71, 0.02, -0.65, -2.03, -0.14, -1.82, 1.37, -0.72, -1.49, -0.98, -0.39, -0.32, 0.21, 0.65, -0.15, 0.50, -0.23, -1.88, 0.98, 0.27, -0.08, 0.04, 1.61, -0.15, -0.60, -0.47, 0.20, 1.13, 0.30, 1.33, -0.76, 0.98, -0.13, 1.38, -1.06, 0.36, -0.71, 0.77, -1.67, -0.35, 0.20, 0.16, -0.04, -1.25, -0.77, -0.91, 0.30, 1.15, 1.63, 0.58, 1.35, 0.61, -0.40, -1.60, 0.02, 0.55, -1.45
Hurst Exponent Estimation

Variance-time plot (Similar to the method of batch means)

1. Start with $m=1$

2. Divide the sample of size n into non-overlapping subsequences of length m. There will be $j = \left\lfloor n/m \right\rfloor$ such subsequences.

3. Take the sample mean of each subset

$$\bar{x}_{km} = \frac{1}{m} \sum_{i=(k-1)m+1}^{km} x_i \quad k = 1, 2, 3, \ldots, j$$

4. Compute the overall mean:

$$\bar{x}_m = \frac{1}{j} \sum_{k=1}^{k=j} \bar{x}_{km}$$
Hurst Parameter Estimation (Cont)

5. Compute the variance of the sample means

\[s_m^2 = \frac{1}{j - 1} \sum_{k=1}^{k=j} (\bar{x}_{k,m} - \bar{x}_m)^2 \]

6. Repeat steps 2 through 5 for m=1, 2, 3, …

7. Plot variance \(s_m^2 \) as a function of the subsequence size \(m \) on a log-log graph

8. Fit a simple linear regression to log(var) vs. log \((m)\).

9. The slope of the regression line is 2H-2.

10. That is, the Hurst exponent is \(1 + a_1/2 \), where \(a_1 \) is the slope of the regression line.

Note: 1. H estimate using this variance time plot method is biased
2. If a process is non-stationary, it may not be self-similar or have LRD, but may result in Hurst exponent between 0.5 and 1
Example 38.7

- Determine the Hurst exponent for the data of Example 38.6
- Batch size $m=1$: 50 batches, batch mean $\bar{x}_i = x_i$
 Overall mean $\bar{x}_1 = \frac{1}{50} \sum_{i=1}^{50} x_i = -0.21$
 Variance of batch means $Var[\bar{x}_1] = \frac{1}{49} \sum_{i=1}^{50} (x_i - \bar{x}_1)^2$
- Batch size $m=2$: 25 batches, batch mean $\bar{x}_{2i} = \frac{1}{2} (x_{2i-1} + x_{2i})$
 Overall mean $\bar{x}_2 = \frac{1}{25} \sum_{i=1}^{25} \bar{x}_{2i} = -1.4627$
 Variance of batch means $var[\bar{x}_2] = \frac{1}{24} \sum_{i=1}^{25} (\bar{x}_{2i} - \bar{x}_2)^2 = 0.52$
Example 38.7 (cont)

<table>
<thead>
<tr>
<th>Batch Size m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Mean \bar{x}_m</td>
<td>-0.10</td>
<td>-0.13</td>
<td>-0.13</td>
<td>-0.06</td>
<td>-0.11</td>
<td>0.01</td>
<td>-0.10</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Variance</td>
<td>1.09</td>
<td>0.52</td>
<td>0.71</td>
<td>0.58</td>
<td>0.40</td>
<td>0.43</td>
<td>0.34</td>
<td>0.31</td>
<td>0.37</td>
</tr>
<tr>
<td>ln(m)</td>
<td>0.00</td>
<td>0.69</td>
<td>1.10</td>
<td>1.39</td>
<td>1.61</td>
<td>1.79</td>
<td>1.95</td>
<td>2.08</td>
<td>2.20</td>
</tr>
<tr>
<td>ln(Variance)</td>
<td>0.08</td>
<td>-0.37</td>
<td>-0.34</td>
<td>-0.55</td>
<td>-0.92</td>
<td>-0.84</td>
<td>-1.08</td>
<td>-1.16</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

- Last few observations are not used for some batch sizes
 - For example, $m=9$, only first 45 observations are used
 - The overall mean is therefore different
Example 38.7 (cont)

- Hurst exponent using variance time plot is biased
- If x_t is non-stationary, it may not be self-similar or may not have LRD, but it may still result in $0.5 < H < 1$

Slope = -0.73

$H = 1 - \frac{-0.73}{2} = 0.635$

ARIMA(0,0.25,0) \Rightarrow $H=0.75$
Exercise 38.10

- Estimate the Hurst exponent for the observations generated in Exercise 38.9
Summary

1. Heavy tailed distributions: CCDF tail higher than exponential distribution
2. Self-Similar Process: \(x_{at} \sim a^H x_t \)
3. Long Range Dependence: \(\sum r_k = \infty \)
4. ARIMA\((p,d+\delta,q)\) with \(0<\delta<0.5\) can be used to generate LRD sequences
5. Hurst parameter can be estimated with variance-time plots. For LRD \(0.5<H<1\).
References

- Fractals, http://mathworld.wolfram.com/Fractal.html