Random Variate Generation

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse567-08/
Overview

1. Inverse transformation
2. Rejection
3. Composition
4. Convolution
5. Characterization
Random-Variate Generation

- General Techniques
- Only a few techniques may apply to a particular distribution
- Look up the distribution in Chapter 29
Inverse Transformation

- Used when F^{-1} can be determined either analytically or empirically.

$$u = F(x) \sim U(0, 1)$$

$$x = F^{-1}(u)$$
Proof

Let \(y = g(x) \), so that \(x = g^{-1}(y) \).

\[
F_Y(y) = P(Y \leq y) = P(x \leq g^{-1}(y)) = F_X(g^{-1}(y))
\]

If \(g(x) = F(x) \), or \(y = F(x) \)

\[
F(y) = F(F^{-1}(y)) = y
\]

And:

\[
f(y) = dF/dy = 1
\]

That is, \(y \) is uniformly distributed between 0 and 1.
Example 28.1

- For exponential variates:

 The pdf \(f(x) = \lambda e^{-\lambda x} \)
 The CDF \(F(x) = 1 - e^{-\lambda x} = u \) or, \(x = -\frac{1}{\lambda} \ln(1 - u) \)

- If \(u \) is U(0,1), 1-\(u \) is also U(0,1)

- Thus, exponential variables can be generated by:

 \[x = -\frac{1}{\lambda} \ln(u) \]
Example 28.2

- The packet sizes (trimodal) probabilities:

<table>
<thead>
<tr>
<th>Size</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 Bytes</td>
<td>0.7</td>
</tr>
<tr>
<td>128 Bytes</td>
<td>0.1</td>
</tr>
<tr>
<td>512 Bytes</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- The CDF for this distribution is:

\[
F(x) = \begin{cases}
0.0 & 0 \leq x < 64 \\
0.7 & 64 \leq x < 128 \\
0.8 & 128 \leq x < 512 \\
1.0 & 512 \leq x
\end{cases}
\]
Example 28.2 (Cont)

- The inverse function is:

\[F^{-1}(u) = \begin{cases}
64 & 0 < u \leq 0.7 \\
128 & 0.7 < u \leq 0.8 \\
512 & 0.8 < u \leq 1
\end{cases} \]

Generate \(u \sim U(0, 1) \)

- \(u \leq 0.7 \Rightarrow \text{Size} = 64 \)
- \(0.7 < u \leq 0.8 \Rightarrow \text{size} = 128 \)
- \(0.8 < u \Rightarrow \text{size} = 512 \)

- Note: CDF is continuous from the right
 \(\Rightarrow \) the value on the right of the discontinuity is used
 \(\Rightarrow \) The inverse function is continuous from the left
 \(\Rightarrow u=0.7 \Rightarrow x=64 \)
Applications of the Inverse-Transformation Technique

<table>
<thead>
<tr>
<th>Distribution</th>
<th>CDF $F'(x)$</th>
<th>Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>$1 - e^{-x/a}$</td>
<td>$-a \ln(u)$</td>
</tr>
<tr>
<td>Extreme value</td>
<td>$1 - e^{-e^{x-a/b}}$</td>
<td>$a + b \ln \ln u$</td>
</tr>
<tr>
<td>Geometric</td>
<td>$1 - (1 - p)^x$</td>
<td>$\left[\frac{\ln(u)}{\ln(1-p)} \right]$</td>
</tr>
<tr>
<td>Logistic</td>
<td>$1 - \frac{1}{1+e^{-x/\mu}}$</td>
<td>$\mu - b \ln\left(\frac{1}{u} - 1\right)$</td>
</tr>
<tr>
<td>Pareto</td>
<td>$1 - x^{-a}$</td>
<td>$1/u^{1/a}$</td>
</tr>
<tr>
<td>Weibull</td>
<td>$1 - e^{(x/\alpha)^b}$</td>
<td>$\alpha (\ln u)^{1/b}$</td>
</tr>
</tbody>
</table>
Rejection

- Can be used if a pdf $g(x)$ exists such that $c \, g(x)$ majorizes the pdf $f(x) \Rightarrow c \, g(x) \geq f(x) \ \forall \ x$

- Steps:
 1. Generate x with pdf $g(x)$.
 2. Generate y uniform on $[0, cg(x)]$.
 3. If $y \leq f(x)$, then output x and return.
 Otherwise, repeat from step 1.
 \[\Rightarrow \text{Continue rejecting the random variates } x \text{ and } y \text{ until } y \geq f(x) \]

- Efficiency = how closely $c \, g(x)$ envelopes $f(x)$
 Large area between $c \, g(x)$ and $f(x)$ \Rightarrow Large percentage of (x, y) generated in steps 1 and 2 are rejected

- If generation of $g(x)$ is complex, this method may not be efficient.
Example 28.2

- Beta(2.4) density function:
 \[f(x) = 20x(1 - x)^3 \quad 0 \leq x \leq 1 \]
 \[c=2.11 \quad \text{and} \quad g(x) = 1 \quad 0 \leq x \leq 1 \]

- Bounded inside a rectangle of height 2.11
 \[\Rightarrow \text{Steps:} \]
 - Generate x uniform on [0, 1].
 - Generate y uniform on [0, 2.11].
 - If \(y \leq 20 x(1-x)^3 \), then output x and return. Otherwise repeat from step 1.
Composition

- Can be used if CDF $F(x) = \text{Weighted sum of n other CDFs.}$
 $$F(x) = \sum_{i=1}^{n} p_i F_i(x)$$

- Here, $p_i \geq 0$, $\sum_{i=1}^{n} p_i = 1$, and F_i's are distribution functions.

- n CDFs are composed together to form the desired CDF
 Hence, the name of the technique.

- The desired CDF is decomposed into several other CDFs
 ⇒ Also called decomposition.

- Can also be used if the pdf $f(x)$ is a weighted sum of n other pdfs:
 $$f(x) = \sum_{i=1}^{n} p_i f_i(x)$$
Steps:

- Generate a random integer I such that:
 \[P(I = i) = p_i \]
- This can easily be done using the inverse-transformation method.
- Generate x with the ith pdf $f_i(x)$ and return.
Example 28.4

- pdf: \(f(x) = \frac{1}{2a} e^{-|x|/a} \)
- Composition of two exponential pdf's
- Generate
 \[u_1 \sim U(0, 1) \]
 \[u_2 \sim U(0, 1) \]
- If \(u_1 < 0.5 \), return; otherwise return \(x = a \ln u_2 \).
- Inverse transformation better for Laplace
Convolution

- Sum of \(n \) variables: \(x = y_1 + y_2 + \cdots + y_n \)
- Generate \(n \) random variate \(y_i \)'s and sum
- For sums of two variables, pdf of \(x = \) convolution of pdfs of \(y_1 \) and \(y_2 \). Hence the name
- Although no convolution in generation
- If pdf or CDF = Sum \(\Rightarrow \) Composition
- Variable \(x = \) Sum \(\Rightarrow \) Convolution

\[
f \ast g(t) = \int f(\tau)g(t-\tau)\,d\tau
\]
Convolutions: Examples

- Erlang-k = \(\sum_{i=1}^{k} \) Exponential_i
- Binomial(n, p) = \(\sum_{i=1}^{n} \) Bernoulli(p)
 \(\Rightarrow \) Generated \(n \) U(0,1), return the number of RNs less than \(p \)
- \(\chi^2(\nu) = \sum_{i=1}^{\nu} N(0,1)^2 \)
- \(\Gamma(a, b_1) + \Gamma(a, b_2) = \Gamma(a, b_1 + b_2) \)
 \(\Rightarrow \) Non-integer value of \(b = \) integer + fraction
- \(\sum_{i=1}^{n} \) Any = Normal \(\Rightarrow \) \(\sum U(0,1) = \) Normal
- \(\sum_{i=1}^{m} \) Geometric = Pascal
- \(\sum_{i=1}^{2} \) Uniform = Triangular
Characterization

- Use special characteristics of distributions ⇒ characterization
- Exponential inter-arrival times ⇒ Poisson number of arrivals
 ⇒ Continuously generate exponential variates until their sum exceeds T and return the number of variates generated as the Poisson variate.
- The a^{th} smallest number in a sequence of $a+b+1$ U(0,1) uniform variates has a $\beta(a, b)$ distribution.
- The ratio of two unit normal variates is a Cauchy(0, 1) variate.
- A chi-square variate with even degrees of freedom $\chi^2(\nu)$ is the same as a gamma variate $\gamma(2,\nu/2)$.
- If x_1 and x_2 are two gamma variates $\gamma(a,b)$ and $\gamma(a,c)$, respectively, the ratio $x_1/(x_1+x_2)$ is a beta variate $\beta(b,c)$.
- If x is a unit normal variate, $e^{\mu+\sigma x}$ is a lognormal(μ, σ) variate.
Is CDF invertible?

Yes

Use inversion

Is CDF a sum of other CDFs?

Yes

Use composition

Is pdf a sum of other pdfs?

Yes

Use Composition
Summary (Cont)

- **Is the variate a sum of other variates?**
 - Yes: Use convolution
 - No: Continue

- **Is the variate related to other variates?**
 - Yes: Use characterization
 - No: Continue

- **Does a majorizing function exist?**
 - Yes: Use rejection
 - No: Use empirical inversion
Exercise 28.1

A random variate has the following triangular density:

\[f(x) = \min(x, 2 - x) \quad 0 \leq x \leq 2 \]

Develop algorithms to generate this variate using each of the following methods:

a. Inverse-transformation
b. Rejection
c. Composition
d. Convolution
Homework 28

- A random variate has the following triangular density:
 \[f(x) = \frac{1}{16} \min(x, 8 - x) \quad 0 \leq x \leq 8 \]

- Develop algorithms to generate this variate using each of the following methods:
 a. Inverse-transformation
 b. Rejection
 c. Composition
 d. Convolution