Testing Random-Number Generators

Raj Jain
Washington University
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse574-08/
Overview

1. Chi-square test
2. Kolmogorov-Smirnov Test
3. Serial-correlation Test
4. Two-level tests
5. K-dimensional uniformity or k-distributivity
6. Serial Test
7. Spectral Test
Testing Random-Number Generators

Goal: To ensure that the random number generator produces a random stream.

- Plot histograms
- Plot quantile-quantile plot
- Use other tests
- Passing a test is necessary but not sufficient
- Pass ≠ Good
 - Fail ⇒ Bad
- New tests ⇒ Old generators fail the test
- Tests can be adapted for other distributions
Chi-Square Test

- Most commonly used test
- Can be used for any distribution
- Prepare a histogram of the observed data
- Compare observed frequencies with theoretical
 \[k = \text{Number of cells} \]
 \[o_i = \text{Observed frequency for } i\text{th cell} \]
 \[e_i = \text{Expected frequency} \]

\[D = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} \]

- \(D=0 \Rightarrow \text{Exact fit} \)
- \(D \) has a chi-square distribution with \(k-1 \) degrees of freedom.
 \[\Rightarrow \text{Compare } D \text{ with } \chi^2_{[1-\alpha, k-1]} \text{ Pass with confidence } \alpha \text{ if } D \text{ is less} \]
Example 27.1

- 1000 random numbers with $x_0 = 1$
- $\chi^2_{[0.9;9]} = 14.68$
- Observed difference = 10.380
- Observed is Less ⇒ Accept IID U(0, 1)

$$x_n = (125x_{n-1} + 1) \mod (2^{12})$$

<table>
<thead>
<tr>
<th>Cell</th>
<th>Obsrvd</th>
<th>Exptd</th>
<th>$\frac{(o-c)^2}{e}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100.0</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>100.0</td>
<td>0.160</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>100.0</td>
<td>0.040</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>100.0</td>
<td>2.250</td>
</tr>
<tr>
<td>5</td>
<td>105</td>
<td>100.0</td>
<td>0.250</td>
</tr>
<tr>
<td>6</td>
<td>93</td>
<td>100.0</td>
<td>0.490</td>
</tr>
<tr>
<td>7</td>
<td>97</td>
<td>100.0</td>
<td>0.090</td>
</tr>
<tr>
<td>8</td>
<td>125</td>
<td>100.0</td>
<td>6.250</td>
</tr>
<tr>
<td>9</td>
<td>107</td>
<td>100.0</td>
<td>0.490</td>
</tr>
<tr>
<td>10</td>
<td>94</td>
<td>100.0</td>
<td>0.360</td>
</tr>
</tbody>
</table>

Total | 1000 | 1000.0 | 10.380 |
Chi-Square for Other Distributions

- Errors in cells with a small e_i affect the chi-square statistic more.
- Best when e_i's are equal.
 \[\Rightarrow \] Use an equi-probable histogram with variable cell sizes.
- Combine adjoining cells so that the new cell probabilities are approximately equal.
- The number of degrees of freedom should be reduced to $k-r-1$ (in place of $k-1$), where r is the number of parameters estimated from the sample.
- Designed for discrete distributions and for large sample sizes only \[\Rightarrow \] Lower significance for finite sample sizes and continuous distributions.
- If less than 5 observations, combine neighboring cells.
Kolmogorov-Smirnov Test

- Developed by A. N. Kolmogorov and N. V. Smirnov
- Designed for continuous distributions
- Difference between the observed CDF (cumulative distribution function) $F_o(x)$ and the expected cdf $F_e(x)$ should be small.
Kolmogorov-Smirnov Test

- $K^+ =$ maximum observed deviation below the expected cdf
- $K^- =$ minimum observed deviation below the expected cdf

$$K^+ = \sqrt{n} \max_x (F_o(x) - F_e(x))$$

$$K^- = \sqrt{n} \max_x (F_e(x) - F_o(x))$$

- $K^+ < K_{[1-\alpha;n]}$ and $K^- < K_{[1-\alpha;n]} \Rightarrow$ Pass at α level of significance.
- Don't use max/min of $F_e(x_i) - F_o(x_i)$
- Use $F_e(x_{i+1}) - F_o(x_i)$ for K^-
- For $U(0, 1)$: $F_e(x) = x$

$$K^+ = \sqrt{n} \max_j \left(\frac{j}{n} - x_j \right)$$

$$K^- = \sqrt{n} \max_j \left(x_j - \frac{j - 1}{n} \right)$$
Example 27.2

30 Random numbers using a seed of $x_0=15$:

\[x_n = 3x_{n-1} \mod 31 \]

- The numbers are:

 14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15.
Example 27.2 (Cont)

The normalized numbers obtained by dividing the sequence by 31 are:

0.45161, 0.35484, 0.06452, 0.19355, 0.58065, 0.74194,
0.22581, 0.67742, 0.03226, 0.09677, 0.29032, 0.87097,
0.61290, 0.83871, 0.51613, 0.54839, 0.64516, 0.93548,
0.80645, 0.41935, 0.25806, 0.77419, 0.32258, 0.96774,
0.90323, 0.70968, 0.12903, 0.38710, 0.16129, 0.48387.
Example 27.2 (Cont)

- $K_{[0.9;n]}$ value for $n = 30$ and $a = 0.1$ is 1.0424

\[
K^- = \max_1^\text{max} \sqrt{n} \cdot j \cdot (x_j - \frac{j-1}{n}) \\
= \sqrt{30} \times 0.03026 \\
= 0.1767
\]

\[
K^+ = \max_1^\text{max} \sqrt{n} \cdot j \cdot \left(\frac{j}{n} - x_j\right) \\
= \sqrt{30} \times 0.03026 \\
= 0.1767
\]

- Observed < Table

<table>
<thead>
<tr>
<th>j</th>
<th>x_j</th>
<th>$\frac{j}{n} - x_j$</th>
<th>$x_j - \frac{j-1}{n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03226</td>
<td>0.00108</td>
<td>0.03226</td>
</tr>
<tr>
<td>2</td>
<td>0.06452</td>
<td>0.00215</td>
<td>0.03118</td>
</tr>
<tr>
<td>3</td>
<td>0.09677</td>
<td>0.00323</td>
<td>0.03011</td>
</tr>
<tr>
<td>4</td>
<td>0.12903</td>
<td>0.00430</td>
<td>0.02903</td>
</tr>
<tr>
<td>5</td>
<td>0.16129</td>
<td>0.00538</td>
<td>0.02796</td>
</tr>
<tr>
<td>6</td>
<td>0.19355</td>
<td>0.00645</td>
<td>0.02688</td>
</tr>
<tr>
<td>7</td>
<td>0.22581</td>
<td>0.00753</td>
<td>0.02581</td>
</tr>
<tr>
<td>8</td>
<td>0.25806</td>
<td>0.00860</td>
<td>0.02473</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>29</td>
<td>0.93548</td>
<td>0.03118</td>
<td>0.00215</td>
</tr>
<tr>
<td>30</td>
<td>0.96774</td>
<td>0.03226</td>
<td>0.00108</td>
</tr>
</tbody>
</table>

Max 0.03226 0.03226

⇒ Pass
Chi-square vs. K-S Test

<table>
<thead>
<tr>
<th>K-S test</th>
<th>Chi-Square Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small samples</td>
<td>Large Sample</td>
</tr>
<tr>
<td>Continuous distributions</td>
<td>Discrete distributions</td>
</tr>
<tr>
<td>Differences between observed and expected cumulative</td>
<td>Differences between observed and prehthesized</td>
</tr>
<tr>
<td>probabilities (CDFs)</td>
<td>probabilities (pdfs or pmfs).</td>
</tr>
<tr>
<td>Uses each observation in the sample without any grouping</td>
<td>Groups observations into a small number of cells</td>
</tr>
<tr>
<td>⇒ makes a better use of the data</td>
<td>Cell sizes affect the conclusion but no firm</td>
</tr>
<tr>
<td>Cell size is not a problem</td>
<td>guidelines</td>
</tr>
<tr>
<td>Exact</td>
<td>Approximate</td>
</tr>
</tbody>
</table>
Serial-Correlation Test

- Nonzero covariance \(\implies \) Dependence. The inverse is not true

- \(R_k = \text{Autocovariance at lag } k = \text{Cov}[x_n, x_{n+k}] \)

\[
R_k = \frac{1}{n-k} \sum_{i=1}^{n-k} (U_i - \frac{1}{2})(U_{i+k} - \frac{1}{2})
\]

- For large \(n \), \(R_k \) is normally distributed with a mean of zero and a variance of \(1/[144(n-k)] \)

- 100(1-\(\alpha \))% confidence interval for the autocovariance is:

\[
R_k \pm z_{1-\alpha/2}/(12\sqrt{n-k})
\]

For \(k \geq 1 \) Check if CI includes zero

- For \(k = 0 \), \(R_0 = \text{variance of the sequence} \) Expected to be 1/12 for IID \(U(0,1) \)
Example 27.3: Serial Correlation Test

\[x_n = 7^5 x_{n-1} \mod (2^{31} - 1) \]

10,000 random numbers with \(x_0 = 1 \):

<table>
<thead>
<tr>
<th>Lag (k)</th>
<th>Autocovariance (R_k)</th>
<th>St. Dev. of (R_k)</th>
<th>90% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.000038</td>
<td>0.000833</td>
<td>-0.001409 - 0.001333</td>
</tr>
<tr>
<td>2</td>
<td>-0.001017</td>
<td>0.000833</td>
<td>-0.002388 - 0.000354</td>
</tr>
<tr>
<td>3</td>
<td>-0.000489</td>
<td>0.000833</td>
<td>-0.001860 - 0.000882</td>
</tr>
<tr>
<td>4</td>
<td>-0.000033</td>
<td>0.000834</td>
<td>-0.001404 - 0.001339</td>
</tr>
<tr>
<td>5</td>
<td>-0.000531</td>
<td>0.000834</td>
<td>-0.001902 - 0.000840</td>
</tr>
<tr>
<td>6</td>
<td>-0.001277</td>
<td>0.000834</td>
<td>-0.002648 - 0.00095</td>
</tr>
<tr>
<td>7</td>
<td>-0.000385</td>
<td>0.000834</td>
<td>-0.001757 - 0.000986</td>
</tr>
<tr>
<td>8</td>
<td>-0.000207</td>
<td>0.000834</td>
<td>-0.001579 - 0.001164</td>
</tr>
<tr>
<td>9</td>
<td>0.001031</td>
<td>0.000834</td>
<td>-0.000340 - 0.002403</td>
</tr>
<tr>
<td>10</td>
<td>-0.000224</td>
<td>0.000834</td>
<td>-0.001595 - 0.001148</td>
</tr>
</tbody>
</table>
Example 27.3 (Cont)

- All confidence intervals include zero \(\Rightarrow\) All covariances are statistically insignificant at 90% confidence.
Two-Level Tests

- If the sample size is too small, the test results may apply locally, but not globally to the complete cycle.
- Similarly, global test may not apply locally
- Use two-level tests
 - Use Chi-square test on n samples of size k each and then use a Chi-square test on the set of n Chi-square statistics so obtained
 - Chi-square on Chi-square test.
- Similarly, $K-S$ on $K-S$
- Can also use this to find a "nonrandom" segment of an otherwise random sequence.
k-Distributivity

- k-Dimensional Uniformity
- Chi-square ⇒ uniformity in one dimension
 ⇒ Given two real numbers a_1 and b_1 between 0 and 1 such that $b_1 > a_1$
 $P(a_1 \leq u_n < b_1) = b_1 - a_1 \quad \forall b_1 > a_1$
- This is known as 1-distributivity property of u_n.
- The 2-distributivity is a generalization of this property in two dimensions:
 $$P(a_1 \leq u_{n-1} < b_1 \text{ and } a_2 \leq u_n < b_2)$$
 $$= (b_1 - a_1)(b_2 - a_2)$$
 For all choices of a_1, b_1, a_2, b_2 in $[0, 1]$, $b_1 > a_1$ and $b_2 > a_2$
k-Distributivity (Cont)

- k-distributed if:
 \[P(a_1 \leq u_n < b_1, \ldots, a_k \leq u_{n+k-1} < b_k) \]

 \[(b_1 - a_1) \cdots (b_k - a_k) \]

- For all choices of \(a_i, b_i \) in \([0, 1]\), with \(b_i > a_i, \ i=1, 2, \ldots, k \).

- k-distributed sequence is always \((k-1)\)-distributed. The inverse is not true.

- Two tests:
 1. Serial test
 2. Spectral test
 3. Visual test for 2-dimensions: Plot successive overlapping pairs of numbers
Example 27.4

- Tausworthe sequence generated by:
 \[x^{15} + x + 1 \]

- The sequence is \(k \)-distributed for \(k \) up to \(\lceil l/l \rceil \), that is, \(k=1 \).

- In two dimensions:
 Successive overlapping pairs \((x_n, x_{n+1})\)
Example 27.5

- Consider the polynomial:
 \[x^{15} + x^4 + 1 \]

- Better 2-distributivity than Example 27.4
Serial Test

- Goal: To test for uniformity in two dimensions or higher.
- In two dimensions, divide the space between 0 and 1 into K^2 cells of equal area
Serial Test (Cont)

- Given \(\{x_1, x_2, \ldots, x_n\} \), use \(n/2 \) non-overlapping pairs \((x_1, x_2), (x_3, x_4), \ldots \) and count the points in each of the \(K^2 \) cells.
- Expected= \(n/(2K^2) \) points in each cell.
- Use chi-square test to find the deviation of the actual counts from the expected counts.
- The degrees of freedom in this case are \(K^2-1 \).
- For \(k \)-dimensions: use \(k \)-tuples of non-overlapping values.
- \(k \)-tuples must be non-overlapping.
- Overlapping \(\Rightarrow \) number of points in the cells are not independent chi-square test cannot be used
- In visual check one can use overlapping or non-overlapping.
- In the spectral test overlapping tuples are used.
- Given \(n \) numbers, there are \(n-1 \) overlapping pairs, \(n/2 \) non-overlapping pairs.
Spectral Test

- Goal: To determine how densely the k-tuples $\{x_1, x_2, \ldots, x_k\}$ can fill up the k-dimensional hyperspace.
- The k-tuples from an LCG fall on a finite number of parallel hyper-planes.
- Successive pairs would lie on a finite number of lines.
- In three dimensions, successive triplets lie on a finite number of planes.
Example 27.6: Spectral Test

\[x_n = 3x_{n-1} \mod 31 \]

Plot of overlapping pairs

- All points lie on three straight lines.
 \[x_n = 3x_{n-1} \]
 \[x_n = 3x_{n-1} - 31 \]
 \[x_n = 3x_{n-1} - 62 \]

- Or:
 \[x_n = 3x_{n-1} - 31k \quad k = 0, 1, 2 \]
In three dimensions, the points \((x_n, x_{n-1}, x_{n-2})\) for the above generator would lie on five planes given by:

\[x_n = 2x_{n-1} + 3x_{n-2} - 31k \quad k = 0, 1, \ldots, 4 \]

Obtained by adding the following to equation

\[x_{n-1} = 3x_{n-2} - 31k_1 \quad k_1 = 0, 1, 2 \]

Note that \(k+k_1\) will be an integer between 0 and 4.
Spectral Test (More)

- Marsaglia (1968): Successive k-tuples obtained from an LCG fall on, at most, $(k!m)^{1/k}$ parallel hyper-planes, where m is the modulus used in the LCG.

- Example: $m = 2^{32}$, fewer than 2,953 hyper-planes will contain all 3-tuples, fewer than 566 hyper-planes will contain all 4-tuples, and fewer than 41 hyper-planes will contain all 10-tuples. Thus, this is a weakness of LCGs.

- Spectral Test: Determine the max distance between adjacent hyper-planes.

- Larger distance \Rightarrow worse generator

- In some cases, it can be done by complete enumeration
Example 27.7

- Compare the following two generators:

 \[x_n = 3x_{n-1} \mod 31 \]

 \[x_n = 13x_{n-1} \mod 31 \]

- Using a seed of \(x_0 = 15 \), first generator:

 14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14.

- Using the same seed in the second generator:

 9, 24, 2, 26, 28, 23, 20, 12, 1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5, 3, 8, 11, 19, 30, 18, 17, 4, 21, 25, 15, 9.
Example 27.7 (Cont)

- Every number between 1 and 30 occurs once and only once

⇒ Both sequences will pass the chi-square test for uniformity
Example 27.7 (Cont)

- First Generator:
Example 27.7 (Cont)

- Three straight lines of positive slope or ten lines of negative slope
- Since the distance between the lines of positive slope is more, consider only the lines with positive slope.

\[x_n = 3x_{n-1} \]
\[x_n = 3x_{n-1} - 31 \]
\[x_n = 3x_{n-1} - 62 \]

- Distance between two parallel lines \(y=\text{ax}+\text{c}_1 \) and \(y=\text{ax}+\text{c}_2 \) is given by \(\frac{|\text{c}_2 - \text{c}_1|}{\sqrt{1 + \text{a}^2}} \)
- The distance between the above lines is \(\frac{31}{\sqrt{10}} \) or 9.80.
Example 27.7 (Cont)

- Second Generator:
Example 27.7 (Cont)

- All points fall on seven straight lines of positive slope or six straight lines of negative slope.
- Considering lines with negative slopes:
 \[x_n = -\frac{5}{2}x_{n-1} + k \frac{31}{2} \quad k = 0, 1, \ldots, 5 \]
- The distance between lines is: \((31/2)/\sqrt{1 + (5/2)^2} \) or 5.76.
- The second generator has a smaller maximum distance and, hence, the second generator has a better 2-distributivity.
- The set with a larger distance may not always be the set with fewer lines.
Example 27.7 (Cont)

- Either overlapping or non-overlapping \(k \)-tuples can be used.
 - With overlapping \(k \)-tuples, we have \(k \) times as many points, which makes the graph visually more complete. The number of hyper-planes and the distance between them are the same with either choice.
- With serial test, only non-overlapping \(k \)-tuples should be used.
- For generators with a large \(m \) and for higher dimensions, finding the maximum distance becomes quite complex.

 See Knuth (1981)
Summary

1. Chi-square test is a one-dimensional test
 Designed for discrete distributions and large sample sizes
2. K-S test is designed for continuous variables
3. Serial correlation test for independence
4. Two level tests find local non-uniformity
5. k-dimensional uniformity = k-distributivity
 tested by spectral test or serial test
Homework 27

- Submit detailed answer to Exercise 27.3. Print 10,000th number also.
Exercise 27.1

Generate 10,000 numbers using a seed of $x_0=1$ in the following generator:

$$x_n = 7^5 x_{n-1} \mod (2^{31} - 1)$$

Classify the numbers into ten equal size cells and test for uniformity using the chi-square test at 90% confidence.
Exercise 27.2

Generate 15 numbers using a seed of $x_0=1$ in the following generator:

$$x_n = (5x_{n-1} + 1) \mod 16$$

Perform a $K-S$ test and check whether the sequence passes the test at a 95% confidence level.
Exercise 27.3

Generate 10,000 numbers using a seed of $x_0=1$ in the following LCG:

$$x_n = 48271x_{n-1} \mod (2^{31} - 1)$$

Perform the serial correlation test of randomness at 90% confidence and report the result.
Exercise 27.4

Using the spectral test, compare the following two generators

\[x_n = 7x_{n-1} \mod 13 \]

\[x_n = 11x_{n-1} \mod 13 \]

Which generator has a better 2-distributivity?