Comparing Systems Using Sample Data

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/cse567-08/
Overview

- Sample Versus Population
- Confidence Interval for The Mean
- Approximate Visual Test
- One Sided Confidence Intervals
- Confidence Intervals for Proportions
- Sample Size for Determining Mean and proportions
Sample

- Old French word `essample'
 ⇒ `sample' and `example'
- One example \(\neq \) theory
- One sample \(\neq \) Definite statement
Sample Versus Population

- Generate several million random numbers with mean μ and standard deviation σ
- Draw a sample of n observations
 $$\bar{x} \neq \mu$$
- Sample mean \neq population mean
- Parameters: population characteristics
 = Unknown = Greek
- Statistics: Sample estimates $=$ Random $=$ English
Confidence Interval for The Mean

- k samples $\Rightarrow k$ Sample means
 \Rightarrow Can't get a single estimate of μ
 \Rightarrow Use bounds c_1 and c_2:

 Probability $\{c_1 \leq \mu \leq c_2\} = 1 - \alpha$

- Confidence interval: $[(c_1, c_2)]$

- Significance level: α

- Confidence level: $100(1-\alpha)$

- Confidence coefficient: 1
Determining Confidence Interval

- Use 5-percentile and 95-percentile of the sample means to get 90% Confidence interval ⇒ Need many samples.
- Central limit theorem: Sample mean of independent and identically distributed observations:
 \[\bar{x} \sim N(\mu, \sigma / \sqrt{n}) \]
 Where \(\mu = \) population mean, \(\sigma = \) population standard deviation
- Standard Error: Standard deviation of the sample mean
 \[= \sigma / \sqrt{n} \]
- 100(1-a)% confidence interval for \(\mu \):
 \[(\bar{x} - z_{1-\alpha/2} s / \sqrt{n}, \bar{x} + z_{1-\alpha/2} s / \sqrt{n}) \]
 \(z_{1-\alpha/2} = (1-\alpha/2)\)-quantile of \(N(0,1) \)
Example 13.1

- $\bar{x} = 3.90$, $s = 0.95$ and $n = 32$

- A 90% confidence interval for the mean
 $\quad = 3.90 \pm (1.645)(0.95)/\sqrt{32} \quad = (3.62, 4.17)$

- We can state with 90% confidence that the population mean is between 3.62 and 4.17. The chance of error in this statement is 10%.

A 95% confidence interval for the mean $\quad = 3.90 \pm (1.960)(0.95)/\sqrt{32}$
$\quad \quad \quad \quad \quad \quad \quad = (3.57, 4.23)$

A 99% confidence interval for the mean $\quad = 3.90 \pm (2.576)(0.95)/\sqrt{32}$
$\quad \quad \quad \quad \quad \quad \quad = (3.46, 4.33)$
Confidence Interval: Meaning

- If we take 100 samples and construct confidence interval for each sample, the interval would include the population mean in 90 cases.

\[
\text{Total yes} \geq 100(1-\alpha)
\]
Confidence Interval for Small Samples

- $100(1-\alpha) \%$ confidence interval for for $n < 30$:
 \[
 (\bar{x} - t_{[1-\alpha/2; n-1]} s / \sqrt{n}, \bar{x} + t_{[1-\alpha/2; n-1]} s / \sqrt{n})
 \]

- $t_{[1-\alpha/2; n-1]} = (1-\alpha/2)$-quantile of a t-variate with $n-1$ degrees of freedom

- $x \sim N(\mu, \sigma^2)$
 \[
 \Rightarrow (\bar{x} - \mu)/(\sigma / \sqrt{n}) \sim N(0, 1)
 \]
 \[
 (n-1)s^2/\sigma^2 \sim \chi^2(n-1)
 \]
 \[
 (\bar{x} - \mu)/\sqrt{s^2/n} \sim t(n-1)
 \]
Example 13.2

- Sample: -0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04, and 0.09.
- Mean = 0, Sample standard deviation = 0.138.
- For 90% interval: \(t_{[0.95;7]} = 1.895 \)
- Confidence interval for the mean

\[
0 \pm 1.895 \times 0.138 = 0 \pm 0.262 = (-0.262, 0.262)
\]
Testing For A Zero Mean

- CI includes zero → means is zero
- CI does not include zero → means is nonzero
Example 13.3

- Difference in processor times: \{1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4\}.

- Question: Can we say with 99% confidence that one is superior to the other?

 Sample size = \(n = 7 \)

 Mean = \(7.20/7 = 1.03 \)

 Sample variance = \((22.84 - 7.20*7.20/7)/6 = 2.57 \)

 Sample standard deviation = \(\sqrt{2.57} = 1.60 \)

 Confidence interval = \(1.03 \pm t \times 1.60/\sqrt{7} = 1.03 \pm 0.6t \)

 \(100(1 - \alpha) = 99, \ \alpha = 0.01, \ \frac{1 - \alpha}{2} = 0.995 \)

 \(t_{[0.995; 6]} = 3.707 \)

 99% confidence interval = \((-1.21, 3.27)\)
Example 13.3 (Cont)

- Opposite signs \Rightarrow we cannot say with 99% confidence that the mean difference is significantly different from zero.
- Answer: They are same.
- Answer: The difference is zero.
Example 13.4

- Difference in processor times: \{1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4\}.
- Question: Is the difference 1?
- 99% Confidence interval = (-1.21, 3.27)
- Yes: The difference is 1
Paired vs. Unpaired Comparisons

- **Paired**: one-to-one correspondence between the ith test of system A and the ith test on system B
- Example: Performance on ith workload
- Use confidence interval of the difference
- **Unpaired**: No correspondence
- Example: n people on System A, n on System B
 \Rightarrow Need more sophisticated method
Example 13.5

- Performance: \{(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 2.5), (0.6, 3.6), (7.3, 1.7)\}. Is one system better?
- Differences: \{-13.7, 13.1, -2.8, -1.1, -3.0, 5.6\}.

Sample mean = -0.32
Sample variance = 81.62
Sample standard deviation = 9.03
Confidence interval for the mean = $-0.32 \pm t\sqrt{(81.62/6)}$

$t_{[0.95,5]} = 2.015$

90% confidence interval = $-0.32 \pm (2.015)(3.69)$

Answer: No. They are not different.
Unpaired Observations

Compute the sample means:

\[
\bar{x}_a = \frac{1}{n_a} \sum_{i=1}^{n_a} x_{ia}
\]

\[
\bar{x}_b = \frac{1}{n_b} \sum_{i=1}^{n_b} x_{ib}
\]

Compute the sample standard deviations:

\[
s_a = \left\{ \frac{\left(\sum_{i=1}^{n_a} x_{ia}^2 \right) - n_a \bar{x}_a^2}{n_a - 1} \right\}^{\frac{1}{2}}
\]

\[
s_b = \left\{ \frac{\left(\sum_{i=1}^{n_b} x_{ib}^2 \right) - n_b \bar{x}_b^2}{n_b - 1} \right\}^{\frac{1}{2}}
\]
Unpaired Observations (Cont)

- Compute the mean difference: \((\bar{x}_a - \bar{x}_b)\)
- Compute the standard deviation of the mean difference:
 \[
s = \sqrt{\left(\frac{s^2_a}{n_a} + \frac{s^2_b}{n_b} \right)}
\]
- Compute the effective number of degrees of freedom:
 \[
 \nu = \frac{\left(\frac{s^2_a}{n_a} + \frac{s^2_b}{n_b} \right)^2}{\frac{1}{n_a+1} \left(\frac{s^2_a}{n_a} \right)^2 + \frac{1}{n_b+1} \left(\frac{s^2_b}{n_b} \right)^2 - 2}
\]
- Compute the confidence interval for the mean difference:
 \[
 (\bar{x}_a - \bar{x}_b) \pm t_{[1-\alpha/2;\nu]} s
 \]
Example 13.6

- Times on System A: \{5.36, 16.57, 0.62, 1.41, 0.64, 7.26\}

- Times on System B: \{19.12, 3.52, 3.38, 2.50, 3.60, 1.74\}

- Question: Are the two systems significantly different?

- For system A:

 Mean \(\bar{x}_a = 5.31 \)

 Variance \(s^2_a = 37.92 \)

 \(n_a = 6 \)

- For System B:

 Mean \(\bar{x}_b = 5.64 \)

 Variance \(s^2_b = 44.11 \)

 \(n_b = 6 \)
Example 13.6 (Cont)

Mean difference $\bar{x}_a - \bar{x}_b = -0.33$
Standard deviation of the mean difference $= 3.698$
Effective number of degrees of freedom $f = 11.921$
The 0.95-quantile of a t-variate with 12 degrees of freedom $= 1.71$
The 90% confidence interval for the difference $= (-6.92, 6.26)$

- The confidence interval includes zero
 \Rightarrow the two systems are not different.
Approximate Visual Test

(c) Is overlap and mean of one is in the C1 of the other, so alternatives are not different

(c) Is overlap but mean of any one is not in the C1 of the other, so need to do the test
Example 13.7

- Times on System A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26}
 Times on system B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74}
 \[t_{[0.95, 5]} = 2.015 \]

- The 90% confidence interval for the mean of A = \(5.31 \pm (2.015) \sqrt{\frac{37.92}{6}}\)
 = (0.24, 10.38)

- The 90% confidence interval for the mean of B = \(5.64 \pm (2.015) \sqrt{\frac{44.11}{6}}\)
 = (0.18, 11.10)

- Confidence intervals overlap and the mean of one falls in the confidence interval for the other.
 \[\Rightarrow \] Two systems are not different at this level of confidence.
What Confidence Level To Use?

- Need not always be 90% or 95% or 99%
- Base on the loss that you would sustain if the parameter is outside the range and the gain you would have if the parameter is inside the range.
- Low loss ⇒ Low confidence level is fine
 E.g., lottery of 5 Million with probability 10^{-7}
- 90% confidence ⇒ buy nine million tickets
- 0.01% confidence level is fine.
- 50% confidence level may or may not be too low
- 99% confidence level may or may not be too high
Hypothesis Testing vs. Confidence Intervals

- Confidence interval provides more information
- Hypothesis test = yes-no decision
- Confidence interval also provides possible range
- Narrow confidence interval \Rightarrow high degree of precision
- Wide confidence interval \Rightarrow Low precision
- Example: $(-100,100) \Rightarrow$ No difference
 $(-1,1) \Rightarrow$ No difference
- Confidence intervals tell us not only what to say but also how loudly to say it
- CI is easier to explain to decision makers
- CI is more useful.
 E.g., parameter range $(100,200)$
 vs. Probability of $\text{parameter} = 110 = 3\%$
One Sided Confidence Intervals

- Two side intervals: 90% Confidence
 \[P(\text{Difference} > \text{upper limit}) = 5\% \]
 \[P(\text{Difference} < \text{Lower limit}) = 5\% \]

- One sided Question: Is the mean greater than 0?
 \[\Rightarrow \text{One side confidence interval} \]

- One sided lower confidence interval for \(\mu \):
 \[
 \left(\bar{x} - t_{[1-\alpha;n-1]} \frac{s}{\sqrt{n}}, \bar{x} \right)
 \]
 Note \(t \) at \(1-\alpha \) (not \(1-\alpha/2 \))

- One sided upper confidence interval for \(\mu \):
 \[
 \left(\bar{x}, \bar{x} + t_{[1-\alpha;n-1]} \frac{s}{\sqrt{n}} \right)
 \]

- For large samples: Use \(z \) instead of \(t \)
Example 13.8

- Time between crashes

<table>
<thead>
<tr>
<th>System</th>
<th>Number</th>
<th>Mean</th>
<th>Stdv</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>972</td>
<td>124.10</td>
<td>198.20</td>
</tr>
<tr>
<td>B</td>
<td>153</td>
<td>141.47</td>
<td>226.11</td>
</tr>
</tbody>
</table>

- Assume unpaired observations

- Mean difference:
 \[\bar{x}_A - \bar{x}_B = 124.10 - 141.47 = -17.37 \]

- Standard deviation of the difference:
 \[s = \sqrt{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b} \right)} = \sqrt{\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}} = 19.35 \]

- Effective number of degrees of freedom:
Example 13.8 (Cont)

\[
\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b} \right)^2}{\frac{1}{n_a+1} \left(\frac{s_a^2}{n_a} \right)^2 + \frac{1}{n_b+1} \left(\frac{s_b^2}{n_b} \right)^2 - 2}
\]

\[
= \frac{\left(\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153} \right)^2}{\frac{1}{972+1} \left(\frac{(198.20)^2}{972} \right)^2 + \frac{1}{153+1} \left(\frac{(226.11)^2}{153} \right)^2 - 2}
\]

\[
= 191.05
\]

- \(\nu > 30 \Rightarrow \) Use \(z \) rather than \(t \)
- One sided test \(\Rightarrow \) Use \(z_{0.90} = 1.28 \) for 90% confidence
- 90% Confidence interval:
 \((-17.37, -17.37 + 1.28 \times 19.35) = (-17.37, 7.402) \)
- CI includes zero \(\Rightarrow \) System A is not more susceptible to crashes than system B.
Confidence Intervals for Proportions

- Proportion = probabilities of various categories

 E.g., P(error)=0.01, P(No error)=0.99

- n_1 of n observations are of type 1 \Rightarrow

 Sample proportion $= p = \frac{n_1}{n}$

 Confidence interval for the proportion

 $$p \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

- Assumes Normal approximation of Binomial distribution

 \Rightarrow Valid only if $np \geq 10$.

- Need to use binomial tables if $np < 10$

 Can't use t-values
CI for Proportions (Cont)

- $100(1-\alpha)\%$ one sided confidence interval for the proportion: ‡

$$
\left(p, p + z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}} \right) \text{ or } \left(p - z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}, p \right)
$$

‡ Provided $np \geq 10$.
Example 13.9

10 out of 1000 pages printed on a laser printer are illegible.

Sample proportion \(p = \frac{10}{1000} = 0.01 \)

np \(\geq 10 \)

Confidence interval \(= p \pm z \sqrt{\frac{p(1-p)}{n}} \)

\(= 0.01 \pm z \sqrt{\frac{0.01(0.99)}{1000}} = 0.01 \pm 0.003z \)

90% confidence interval = 0.01 \(\pm (1.645)(0.003) \)

= (0.005, 0.015)

95% confidence interval = 0.01 \(\pm (1.960)(0.003) \)

= (0.004, 0.016)
Example 13.9 (Cont)

- At 90% confidence:

 0.5% to 1.5% of the pages are illegible

 Chances of error = 10%

- At 95% Confidence:

 0.4% to 1.6% of the pages are illegible

 Chances of error = 5%
Example 13.10

- 40 Repetitions on two systems: System A superior in 26 repetitions
- Question: With 99% confidence, is system A superior?
 \[p = \frac{26}{40} = 0.65 \]
- Standard deviation:
 \[\sqrt{p \times (1-p)/n} = 0.075 \]
- 99% confidence interval:
 \[0.65 \pm (2.576)(0.075) = (0.46, 0.84) \]
- CI includes 0.5
 \[\Rightarrow \text{we cannot say with 99% confidence that system A is superior.} \]
- 90% confidence interval:
 \[0.65 \pm (1.645)(0.075) = (0.53, 0.77) \]
- CI does not include 0.5
 \[\Rightarrow \text{Can say with 90% confidence that system A is superior.} \]
Sample Size for Determining Mean

- Larger sample ⇒ Narrower confidence interval \(\Rightarrow \) Higher confidence

- Question: How many observations \(n \) to get an accuracy of \(\pm r\% \) and a confidence level of \(100(1-\alpha)\% \)?

\[
\bar{x} \pm z \frac{s}{\sqrt{n}}
\]

- \(r\% \) Accuracy ⇒

\[
\text{CI} = (\bar{x}(1 - r/100), \bar{x}(1 + r/100))
\]

\[
\bar{x} \pm z \frac{s}{\sqrt{n}} = \bar{x} \left(1 \pm \frac{r}{100}\right)
\]

\[
z \frac{s}{\sqrt{n}} = \bar{x} \frac{r}{100}
\]

\[
n = \left(\frac{100zs}{r\bar{x}}\right)^2
\]
Example 13.11

- Sample mean of the response time = 20 seconds
 Sample standard deviation = 5

Question: How many repetitions are needed to get the response time accurate within 1 second at 95% confidence?

- Required accuracy = 1 in 20 = 5%
 Here, \(\bar{x} = 20, s = 5, z = 1.960, \) and \(r = 5, \)

\[
n = \left(\frac{(100)(1.960)(5)}{(5)(20)} \right)^2 = (9.8)^2 = 96.04
\]

A total of 97 observations are needed.
Sample Size for Determining Proportions

Confidence interval for the proportion = $p \pm z \sqrt{\left(\frac{p(1-p)}{n} \right)}$

To get a half-width (accuracy of) r:

$p \pm r = p \pm z \sqrt{\left(\frac{p(1-p)}{n} \right)}$

$r = z \sqrt{\left(\frac{p(1-p)}{n} \right)}$

$n = z^2 \frac{p(1-p)}{r^2}$
Example 13.12

- Preliminary measurement: illegible print rate of 1 in 10,000.
- Question: How many pages must be observed to get an accuracy of 1 per million at 95% confidence?
- Answer:

\[p = \frac{1}{10000} = 1E - 4, r = 1E - 6, z = 1.960 \]

\[n = (1.960)^2 \left(\frac{10^{-4}(1 - 10^{-4})}{(10^{-6})^2} \right) = 384160000 \]

A total of 384.16 million pages must be observed.
Example 13.13

- Algorithm A loses 0.5% of packets and algorithm B loses 0.6%.
- Question: How many packets do we need to observe to state with 95% confidence that algorithm A is better than the algorithm B?
- Answer:

 $$\text{CI for algorithm A} = 0.005 \mp 1.960 \left(\frac{0.005(1 - 0.005)}{n} \right)^{1/2}$$

 $$\text{CI for algorithm B} = 0.006 \mp 1.960 \left(\frac{0.006(1 - 0.006)}{n} \right)^{1/2}$$
Example 13.13 (Cont)

- For non-overlapping intervals:

\[
0.005 \equiv 1.960 \left(\frac{0.005(1-0.005)}{n} \right)^{1/2}
\]

\[
\leq 0.006 \equiv 1.960 \left(\frac{0.006(1-0.006)}{n} \right)^{1/2}
\]

- \(n = 84340 \Rightarrow \text{We need to observe 85,000 packets.} \)
Summary

- All statistics based on a sample are random and should be specified with a confidence interval.
- If the confidence interval includes zero, the hypothesis that the population mean is zero cannot be rejected.
- Paired observations ⇒ Test the difference for zero mean.
- Unpaired observations ⇒ More sophisticated test.
- Confidence intervals apply to proportions too.
Exercise 13.1

Given two samples \{x_1, x_2, \ldots, x_n\} and \{y_1, y_2, \ldots, y_n\} from normal population \(N(\mu,1)\), what is the distribution of:

- Sample means: \(\bar{x}, \bar{y}\)
- Difference of the means: \(\bar{x} - \bar{y}\)
- Sum of the means: \(\bar{x} + \bar{y}\)
- Mean of the means: \((\bar{x} + \bar{y})/2\)
- Normalized sample variances: \(s_x^2, s_y^2\)
- Sum of sample variances: \(s_x^2 + s_y^2\)
- Ratio of sample variances: \(s_x^2/s_y^2\)
- Ratio \((\bar{x} - \mu)/s_x/\sqrt{n}\)
Exercise 13.2

- Answer the following for the data of Exercise 12.1:
 - What is the 10-percentile and 90-percentile from the sample?
 - What is the mean number of disk I/Os per program?
 - What is the 90% confidence interval for the mean?
 - What fraction of programs make less than or equal to 25 I/Os and what is the 95% confidence interval for the fraction?
 - What is the one sided 90% confidence interval for the mean?
Exercise 13.3

For the code size data of Table 11.2, find the confidence intervals for the average code sizes on various processors. Choose any two processors and answer the following:

- At what level of significance, can you say that one is better than the other?
- How many workloads would you need to decide the superiority at 90% confidence?
Homework

- Read chapter 13
- Submit solution to Exercise 13.2