CSE 567M
Computer Systems Analysis

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/cse567-08/
Overview

- Goal of this Course
- Contents of the course
- Tentative Schedule
- Project
- Grading
Goal of This Course

- Comprehensive course on performance analysis
- Includes measurement, statistical modeling, experimental design, simulation, and queuing theory
- How to avoid common mistakes in performance analysis
- Graduate course: (Advanced Topics)
 ⇒ Lot of independent reading and writing
 ⇒ Project/Survey paper (Research techniques)
Text Book

Objectives: What You Will Learn

- Specifying performance requirements
- Evaluating design alternatives
- Comparing two or more systems
- Determining the optimal value of a parameter (system tuning)
- Finding the performance bottleneck (bottleneck identification)
- Characterizing the load on the system (workload characterization)
- Determining the number and sizes of components (capacity planning)
- Predicting the performance at future loads (forecasting).
Basic Terms

- **System**: Any collection of hardware, software, and firmware
- **Metrics**: Criteria used to evaluate the performance of the system's components.
- **Workloads**: The requests made by the users of the system.
Main Parts of the Course

- Part I: An Overview of Performance Evaluation
- Part II: Measurement Techniques and Tools
- Part III: Probability Theory and Statistics
- Part IV: Experimental Design and Analysis
- Part V: Simulation
- Part VI: Queueing Theory
Part I: An Overview of Performance Evaluation

- Introduction
- Common Mistakes and How To Avoid Them
- Selection of Techniques and Metrics
Example I

- What performance metrics should be used to compare the performance of the following systems:
 - Two disk drives?
 - Two transaction-processing systems?
 - Two packet-retransmission algorithms?
Part II: Measurement Techniques and Tools

- Types of Workloads
- Popular Benchmarks
- The Art of Workload Selection
- Workload Characterization Techniques
- Monitors
- Accounting Logs
- Monitoring Distributed Systems
- Load Drivers
- Capacity Planning
- The Art of Data Presentation
- Ratio Games
Example II

- Which type of monitor (software or hardware) would be more suitable for measuring each of the following quantities:
 - Number of Instructions executed by a processor?
 - Degree of multiprogramming on a timesharing system?
 - Response time of packets on a network?
Part III: Probability Theory and Statistics

- Probability and Statistics Concepts
- Four Important Distributions
- Summarizing Measured Data By a Single Number
- Summarizing The Variability Of Measured Data
- Graphical Methods to Determine Distributions of Measured Data
- Sample Statistics
- Confidence Interval
- Comparing Two Alternatives
- Measures of Relationship
- Simple Linear Regression Models
- Multiple Linear Regression Models
- Other Regression Models
Example III

- The number of packets lost on two links was measured for four file sizes as shown below:

<table>
<thead>
<tr>
<th>File Size</th>
<th>Link A</th>
<th>Link B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>1200</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1300</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Which link is better?
Part IV: Experimental Design and Analysis

- Introduction to Experimental Design
- 2^k Factorial Designs
- $2^k r$ Factorial Designs with Replications
- 2^{k-p} Fractional Factorial Designs
- One Factor Experiments
- Two Factors Full Factorial Design without Replications
- Two Factors Full Factorial Design with Replications
- General Full Factorial Designs With k Factors
Example IV

- The performance of a system depends on the following three factors:
 - Garbage collection technique used: G1, G2, or none.
 - Type of workload: editing, computing, or AI.
 - Type of CPU: C1, C2, or C3.

How many experiments are needed? How does one estimate the performance impact of each factor?
Part V: Simulation

- Introduction to Simulation
- Types of Simulations
- Model Verification and Validation
- Analysis of Simulation Results
- Random-Number Generation
- Testing Random-Number Generators
- Random-Variate Generation
- Commonly Used Distributions
Example V

- In order to compare the performance of two cache replacement algorithms:
 - What type of simulation model should be used?
 - How long should the simulation be run?
 - What can be done to get the same accuracy with a shorter run?
 - How can one decide if the random-number generator in the simulation is a good generator?
Part VI: Queueing Theory

- Introduction to Queueing Theory
- Analysis of A Single Queue
- Queueing Networks
- Operational Laws
- Mean Value Analysis and Related Techniques
- Convolution Algorithm
- Advanced Techniques
Example VI

The average response time of a database system is three seconds. During a one-minute observation interval, the idle time on the system was ten seconds.

Using a queueing model for the system, determine the following:

- System utilization
- Average service time per query
- Number of queries completed during the observation interval
- Average number of jobs in the system
- Probability of number of jobs in the system being greater than 10
- 90-percentile response time
- 90-percentile waiting time
The Art of Performance Evaluation

- Given the same data, two analysts may interpret them differently.

Example:

- The throughputs of two systems A and B in transactions per second is as follows:

<table>
<thead>
<tr>
<th>System</th>
<th>Workload 1</th>
<th>Workload 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
Possible Solutions

- Compare the average:

<table>
<thead>
<tr>
<th>System</th>
<th>Workload 1</th>
<th>Workload 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>20</td>
<td>15</td>
</tr>
</tbody>
</table>

Conclusion: The two systems are equally good.

- Compare the ratio with system B as the base

<table>
<thead>
<tr>
<th>System</th>
<th>Workload 1</th>
<th>Workload 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>0.5</td>
<td>1.25</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Conclusion: System A is better than B.
Solutions (Cont)

- Compare the ratio with system A as the base

<table>
<thead>
<tr>
<th>System</th>
<th>Workload 1</th>
<th>Workload 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>2</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Conclusion: System B is better than A.

- Similar games in: Selection of workload, Measuring the systems, Presenting the results.

- Common mistakes will also be discussed.
Grading

- Exams (Best of 2 mid terms + Final) 60%
- Class participation 5%
- Homeworks 15%
- Project 20%
Prerequisites

- CSE 131: Computer Science I
- CSE 126: Introduction To Computer Programming
- CSE 260M: Introduction To Digital Logic And Computer Design (Not required)
- Basic Probability and Statistics
Prerequisite

- Statistics:
 - Mean, variance
 - Normal distribution
 - Density function, Distribution function
 - Coefficient of variation
 - Correlation coefficient
 - Median, mode, Quantile
- C Programming
Tentative Schedule

- 8/27 Course Introduction
- 9/1 Memorial Day Holiday - No class
- 9/3 Common Mistakes Chapter 2
- 9/08 Selection of Techniques and Metrics Chapter 3
 ✓ Types of Workloads Chapter 4
 ✓ Workload Selection Chapter 5
- 9/10 Workload Characterization Chapter 6
- 9/15 Data Presentation Chapter 10
 ✓ Ratio Games Chapter 11
- 9/17 Summarizing Measured Data Chapter 12
- 9/22 Comparing Systems Using Random Data Chapter 13
- 9/24 Comparing Systems Using Random Data (Cont)
- 9/29 Mid-Term Exam 1
Tentative Schedule (Cont)

- 10/1 Simple Linear Regression Models Chapter 14
- 10/6 Other Regression Models Chapter 15
- 10/08 Experimental Designs Chapter 16
 - 2k Experimental Designs Chapter 17
- 10/13 Factorial Designs with Replication Chapter 18
- 10/15 Fractional Factorial Designs Chapter 19
- 10/20 One Factor Experiments Chapter 20
 - Two Factor Full Factorial Design w/o Replications Chapter 21
- 10/22 Two Factor Full Factorial Designs with Replications Chapter 22
 - General Full Factorial Designs Chapter 23
- 10/27 Introduction to Simulation Chapter 24
- 10/29 Introduction to Simulation (Continued) Chapter 24
- 11/3 Mid-Term Exam 2
Tentative Schedule (Cont)

- 11/5 Analysis of Simulation Results Chapter 25
- 11/10 Random Number Generation Chapter 26
- 11/12 Testing Random Number Generators Chapter 27
- 11/17 Introduction to Queueing Theory Chapter 30
 Analysis of Single Queue Chapter 31
- 11/19 Queueing Networks Chapter 32
 Operational Laws Chapter 33
- 11/24 Operational Laws (Cont)
- 11/26 Mean-Value Analysis Chapter 34
- 12/1 Convolution Algorithm Chapter 35
- 12/03 TBD
- 12/8 Final Exam
- 12/10 Class Meeting: Final Grades
Projects

- A survey paper on a performance topic
 - Comparison of Measurement, Modeling, Simulation, Analysis Tools: NS2
 - Comprehensive Survey: Technical Papers, Industry Standards, Products

- A real case study on performance of a system you are already working on

- Average 6 Hrs/week/person on project + 9 Hrs/week/person on class

- Recent Developments: Last 5 to 10 years ⇒ Not in books
- Better ones may be submitted to magazines or journals
Example of Previous Case Studies

- Measure the performance of a remote procedure call mechanism used in a distributed system.
- Measure and compare the performance of window systems of two artificial intelligence systems.
- Simulate and compare the performance of two processor interconnection networks.
- Measure and analyze the performance of two microprocessors.
- Characterize the workload of a campus timesharing system.
- Compute the effects of various factors and their interactions on the performance of two text-formatting programs.
- Measure and analyze the performance of a distributed information system.
Case Studies (Cont)

- Simulate the communications controllers for an intelligent terminal system.
- Measure and analyze the performance of a computer-aided design tool.
- Measure and identify the factors that affect the performance of an experimental garbage collection algorithm.
- Measure and compare the performance of remote procedure calls and remote pipe calls.
- Analyze the effect of factors that impact the performance of two RISC processor architectures.
- Analyze the performance of a parallel compiler running on a multiprocessor system.
Develop a software monitor to observe the performance of a large multiprocessor system.

Analyze the performance of a distributed game program running on a network of artificial intelligence systems.

Compare the performance of several robot control algorithms.

Goal: Provide an insight (or information) not obvious before the project.

Real Problems: Thesis work, or job

Homeworks: Apply techniques learnt to your system.
Project Schedule

Mon 10/6/06 Topic Selection
Mon 10/20/06 References Due
Mon 10/27/06 Outline Due
Mon 11/10/06 First Draft Due -> Peer reviewed
Mon 11/17/06 Reviews Returned
Mon 11/24/06 Final Report Due
Office Hours

- Monday: 11 AM to 12 noon
 Wednesday: 3:30 PM to 4:30 PM

- Office: Bryan 405D

- Grader: Chakchai So-In, cs5@cec.wustl.edu
Frequently Asked Questions

- Yes, I do use “curve”. Your grade depends upon the performance of the rest of the class.
- All homeworks are due on the following Monday unless specified otherwise.
- Any late submissions, if allowed, will *always* have a penalty.
- One 8.4x11 sheet allowed in the exam. Book not allowed. Time limited.
- Exams consist of numerical as well as multiple-choice (true-false) questions.
- There is negative grading on incorrect multiple-choice questions. Grade: +1 for correct. -1/(n-1) for incorrect.
- Everyone including the graduating students are graded the same way.
Summary

- Goal: To prepare you for correct analysis and modeling of any system
- There will be a self-reading and writing
- Get ready to work hard
Quiz 0: Prerequisites

True or False?
T F

- The sum of two normal variates is normal.
- The sum of two normal variates with means 4 and 3 has a mean of 12.
- The probability of a fair coin coming up head once and tail once in two throws is 1.
- The density function f(x) approaches 1 as x approaches \(\infty \).
- Given two variables, the variable with higher median also has a higher mean.
- The probability of a fair coin coming up heads twice in a row is 1/4.
- The difference of two normal variates with means 4 and 3 has a mean of 4/3.
- The cumulative distribution function F(x) approaches 1 as x approaches \(\infty \).
- High coefficient of variation implies a low variance and vice versa.
- If x is 0, then after x++, x will be 1.

Marks = Correct Answers _____ - Incorrect Answers _____ = ______