Overview

1. Secret Key Encryption
2. Public Key Encryption

Not Covered: Hash Functions, Digital Signature, Digital Certificates, IPSec, VPN, Firewalls, Intrusion Detection Email Security, SSL, IKE, WEP

Note: This class lecture is based on Chapter 8 of the textbook (Kurose and Ross) and the figures provided by the authors.
Security Requirements

- **Integrity**: Received = sent?
- **Availability**: Legal users should be able to use.
 Ping continuously ⇒ No useful work gets done.
- **Confidentiality and Privacy**: No snooping or wiretapping
- **Authentication**: You are who you say you are.
 A student at Dartmouth posing as a professor canceled the exam.
- **Authorization** = Access Control
 Only authorized users get to the data
- **Non-repudiation**: Neither sender nor receiver can deny the existence of a message
Overview

Secret Key Encryption

1. Secret Key Encryption
2. Block Encryption
3. Cipher Block Chaining (CBC)
4. DES, 3DES, AES
5. Stream Cipher: RC4
6. Key Distribution
Secret Key Encryption

- Also known as **symmetric** key encryption
- Encrypted_Message = Encrypt(Key, Message)
- Message = Decrypt(Key, Encrypted_Message)
- Example: Encrypt = division
- $433 = 48 \times 9 + 1$ (using divisor of 9)
Secret Key: A Simple Example

- **Substitution**: Substituting one thing for another
- **Monoalphabetic**: substitute one letter for another

 plaintext: abcdefghijklmnopqrstuvwxyz

 ciphertext: mnbvcxzasdfghjklpoiuytrewq

 E.g.: Plaintext: bob. i love you. alice
 ciphertext: nkn. s gktc wky. mgsbc

- **Polyalphabetic**: Use multiple substitutions C1, C2, ...
 Substitution selected depends upon the position
 ⇒Same letter coded differently in different position
Block Encryption

- Block Encryption

Diagram:

- Block
- Substitution
- Permutation
- Round

- 64-bit input
- 8-bit pieces
- S1, S2, S3, S4, S5, S6, S7, S8
- Loop for n rounds
- 64-bit intermediate
- Permute the bits, possibly based on the key
- Divide input into eight 8-bit pieces
- Eight 8-bit substitution functions derived from the key
Block Encryption (Cont)

- Short block length \Rightarrow tabular attack
- 64-bit block
- Transformations:
 - Substitution: replace k-bit input blocks with k-bit output blocks
 - Permutation: move input bits around. $1 \rightarrow 13, 2 \rightarrow 61$, etc.
- Round: Substitution round followed by permutation round and so on. Diffusion + Confusion.
Cipher Block Chaining (CBC)

- Goal: Same message encoded differently
- Add a random number before encoding

Diagram:

- m_1, m_2, m_3, m_4, m_5, m_6 are messages.
- r_1, r_2, r_3, r_4, r_5, r_6 are random numbers.
- E represents encryption.
- c_1, c_2, c_3, c_4, c_5, c_6 are ciphertexts.

Steps:
1. r_1 is added to m_1.
2. The result is encrypted to c_1.
3. The output from c_1 is added to r_2.
4. The result is encrypted to c_2.
5. This process continues for all messages.
CBC (Cont)

- Use C_i as random number for $i+1$

- Need Initial Value (IV)

- no IV \Rightarrow Same output for same message
 \Rightarrow one can guess changed blocks

- Example: Continue Holding, Start Bombing
DES and 3DES

- Data Encryption Standard (DES)
 - 64 bit plain text blocks, 56 bit key
 - Broken in 1998 by Electronic Frontier Foundation

- Triple DES (3DES)
 - Uses 2 or 3 keys and 3 executions of DES
 - Effective key length 112 or 168 bit
 - Block size (64 bit) too small ⇒ Slow
Advanced Encryption Standard (AES)

- Designed in 1997-2001 by National Institute of Standards and Technology (NIST)
- Federal information processing standard (FIPS 197)
- Symmetric block cipher, Block length 128 bits
- Key lengths 128, 192, and 256 bits
1. Secret key encryption requires a shared secret key
2. Block encryption, e.g., DES, 3DES, AES break into fixed size blocks and encrypt
3. CBC is one of many modes are used to ensure that the same plain text results in different cipher text.
4. Stream Cipher, e.g., RC4, generate a random stream and xor to the data
5. Key distribution center can be used to exchange session keys
Home Exercises

- Try but do not submit
- Review questions R1, R2, R6
- Problems P1, P2, P3, P4, P5, P6
- Read pages 687-698 of the textbook
Problem P6: Consider 3-bit block cipher in Table 8.1.

<table>
<thead>
<tr>
<th>Plain</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher</td>
<td>110</td>
<td>111</td>
<td>101</td>
<td>100</td>
<td>011</td>
<td>010</td>
<td>000</td>
<td>001</td>
</tr>
</tbody>
</table>

Suppose the plaintext is 100100100.

(a) Initially assume that CBC is not used. What is the resulting ciphertext?

(b) Suppose Trudy sniffs the cipher text. Assuming she knows that a 3-bit block cipher without CBC is being employed (but doesn’t know the specific cipher), what can she surmise?

(c) Now suppose that CBC is used with IV-111. What is the resulting ciphertext?
Public Key Encryption

1. Public Key Encryption
2. Modular Arithmetic
3. RSA Public Key Encryption
4. Confidentiality
5. Diffie-Hellman Key Agreement
6. Hash Functions: MD5, SHA-1
7. Message Authentication Code (MAC)
8. Digital Signature
9. Digital Certificates
Public Key Encryption

- Invented in 1975 by Diffie and Hellman
- Encrypted_Message = Encrypt(Key1, Message)
- Message = Decrypt(Key2, Encrypted_Message)
One key is private and the other is public

Message = Decrypt(Public_Key, Encrypt(Private_Key, Message))

Message = Decrypt(Private_Key, Encrypt(Public_Key, Message))
Public Key Encryption Method

- RSA: Encrypted_Message = \(m^3 \mod 187 \)
- Message = Encrypted_Message\(^{107} \mod 187 \)
- Key1 = <3,187>, Key2 = <107,187>
- Message = 5
- Encrypted Message = \(5^3 = 125 \)
- Message = \(125^{107} \mod 187 = 5 \)
 \[= 125(64+32+8+2+1) \mod 187 \]
 \[= \{(125^{64} \mod 187)(125^{32} \mod 187)...(125^2 \mod 187)(125 \mod 187)} \mod 187 \]
Modular Arithmetic

- \(xy \mod m = (x \mod m)(y \mod m) \mod m \)
- \(x^4 \mod m = (x^2 \mod m)(x^2 \mod m) \mod m \)
- \(x^{ij} \mod m = (x^i \mod m)^j \mod m \)
- \(125 \mod 187 = 125 \)
- \(125^2 \mod 187 = 1625 \mod 187 = 104 \)
- \(125^4 \mod 187 = (125^2 \mod 187)^2 \mod 187 = 104^2 \mod 187 = 10816 \mod 187 = 157 \)
- \(125^8 \mod 187 = 157^2 \mod 187 = 152 \)
- \(125^{16} \mod 187 = 152^2 \mod 187 = 103 \)
- \(125^{32} \mod 187 = 103^2 \mod 187 = 137 \)
- \(125^{64} \mod 187 = 137^2 \mod 187 = 69 \)
- \(125^{64+32+8+2+1} \mod 187 = 69 \times 137 \times 152 \times 104 \times 125 \mod 187 = 18679128000 \mod 187 = 5 \)
RSA Public Key Encryption

- Ron Rivest, Adi Shamir, and Len Adleman at MIT 1978
- Both plain text M and cipher text C are integers between 0 and n-1.
- Key 1 = \{e, n\}, Key 2 = \{d, n\}
- \(C = M^e \mod n \)
- \(M = C^d \mod n \)
- How to construct keys:
 - Select two large primes: p, q, p \(\neq \) q
 - \(n = p \times q \)
 - Calculate \(z = (p-1)(q-1) \)
 - Select e, such that \(\gcd(z, e) = 1; 0 < e < z \)
 - Calculate d such that \(de \mod z = 1 \)
RSA Algorithm: Example

- Select two large primes: \(p, q, p \neq q \)
 \[p = 17, \ quad q = 11 \]
- \(n = p \times q = 17 \times 11 = 187 \)
- Calculate \(z = (p-1)(q-1) = 16 \times 10 = 160 \)
- Select \(e \), such that \(\gcd(z, e) = 1; 0 < e < z \)
 say, \(e = 7 \)
- Calculate \(d \) such that \(de \mod z = 1 \)
 \[160k + 1 = 161, 321, 481, 641 \]
 - Check which of these is divisible by 7
 \[161 \text{ is divisible by 7 giving } d = 161/7 = 23 \]
- Key 1 = \{7, 187\}, Key 2 = \{23, 187\}
Homework 8B

Problem P8: Consider RSA with p=5, q=11

A. what are n and z

B. let e be 3. Why is this an acceptable choice for e?

C. Find d such that de=1(mod z) and d<160

D. Encrypt the message m=8 using the key (n,e). Let c be the corresponding cipher text. Show all work including decryption.
Confidentiality

- User 1 to User 2:
 - Encrypted_Message = Encrypt(Public_Key2, Encrypt(Private_Key1, Message))
- Message = Decrypt(Public_Key1, Decrypt(Private_Key2, Encrypted_Message))
 ⇒ Authentic and Private
1. Public Key Encryption uses two keys: Public and Private
2. RSA method is based on difficulty of factorization
Review Exercises

- Try but do not submit
- Review exercises: R7
- Problems: P7, P9, P10
- Read pages 699-704 of the textbook
- Sections 8.1 and 8.2