Chapter 6
The Transport Layer

Raj Jain

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/

6.4 TCP and UDP
- Key features
- Header format
- Mechanisms
- Implementation choices
- Slow start congestion avoidance
- TCP vs ISO TP4
- UDP

Overview
Transport Control Protocol (TCP)

- Key Services:
 - Send: Please send when convenient
 - Data stream push: Please send it all now
 - Urgent data signalling: Destination TCP! please give this urgent data to the user

TCP Header Format

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Dest Port</th>
<th>Seq No</th>
<th>Ack No</th>
<th>Data Offset</th>
<th>Resvd</th>
<th>Flags</th>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>32</td>
<td>32</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Checksum</th>
<th>Urgent</th>
<th>Options</th>
<th>Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

Size in bits
TCP Header

- Source Port (16 bits): Identifies source user process
- Destination Port (16 bits)
- Sequence Number (32 bits): Sequence number of the first byte in the segment. If syn is present, this is the initial sequence number (ISN) and the first data byte is ISN+1.
- Ack number (32 bits): Next byte expected
- Data offset (4 bits): Number of 32-bit words in the header
- Reserved (6 bits)
- Flags (6 bits): Urgent pointer field significant, ack field significant, push function, reset the connection, synchronize the sequence numbers, no more data from sender

TCP Header (Cont)

- Window (16 bits): Will accept [Ack] to [Ack]+[window]
- Checksum (16 bits): covers the segment plus a pseudo header
 Includes the following fields from IP header: source and dest addr, protocol, segment length. Protects from IP misdelivery.
- Urgent pointer (16 bits): Points to the byte following urgent data. Lets receiver know how much urgent data is coming.
- Options (variable): Max TPDU size (Default 536 bytes)
 Window scale, SACK permitted

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Destination Address</th>
<th>Pseudo-header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>Protocol</td>
<td>Segment Length</td>
</tr>
<tr>
<td>TCP Header</td>
<td>User Data</td>
<td></td>
</tr>
</tbody>
</table>
TCP Service Requests

- Unspecified passive open:
 - Listen for connection requests from any user
- Full passive open:
 - Listen for connection requests from specified user
- Active open: Request connection
- Active open with data: Request connection and transmit data
- Send: Send data
- Allocate: Issue incremental allocation for receive data
- Close: Close the connection gracefully
- Abort: Close the connection abruptly
- Status: Report connection status

TCP Service Responses

- Open ID: Informs the name assigned to the pending request
- Open Failure: Your open request failed
- Open Success: Your open request succeeded
- Deliver: Reports arrival of data
- Closing: Remote TCP has issued a close request
- Terminate: Connection has been terminated
- Status Response: Here is the connection status
- Error: Reports service request or internal error
TCP Mechanisms

- Connection Establishment
 - Three way handshake
 - SYN flag set ⇒ Request for connection

- Connection Termination
 - Close with FIN flag set
 - Abort

Data Transfer

- Stream: Every byte is numbered modulo 2^{32}.
- Header contains the sequence number of the first byte
- Flow control: Credit = number of bytes
- Data transmitted at intervals determined by TCP
 Push ⇒ Send now
- Urgent: Send this data in ordinary data stream with urgent pointer
- If TPDU not intended for this connection is received, the “reset” flag is set in the outgoing segment
Implementation Policies (Choices)

- Send Policy: Too little ⇒ More overhead. Too large ⇒ Delay
 Push ⇒ Send now.
- Delivery Policy: May store or deliver each in-order segment.
 Push ⇒ Send now.
- Accept Policy: May or May not discard out-of-order segments
- Retransmit Policy: First only
 Retransmit all
 Retransmit individual
 (maintain separate timer for each segment)
- Ack Policy: Immediate (no piggybacking)
 Cumulative (wait for outgoing data or timeout)

Slow Start Flow Control

- Window = Flow Control Avoids receiver overrun
- Need congestion control to avoid network overrun
- The sender maintains two windows: Credits from the receiver
 Congestion window from the network
 Congestion window is always less than the receiver window
- Starts with a congestion window of 1 segment (one max
 segment size) Do not disturb existing connections too much.
- Increase CW by 1 every time an ack is received
Slow Start (Cont)

- If packets lost, remember slow start threshold to CW/2
 - Set CW to 1
 - Increment by 1 per ack until SS threshold
 - Increment by 1/CW per ack afterwards

![CW vs Time Graph](image)

Uset Datagram Protocol (UDP)

- Connectionless end-to-end service
- No flow control. No error recovery (no acks)
- Provides port addressing
- Error detection (Checksum) optional. Applies to pseudoheader (same as TCP) and UDP segment. If not used, it is set to zero.
- Used by network management

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Dest Port</th>
<th>Length</th>
<th>Checksum</th>
<th>Size in bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- TCP header format and services
- TCP Streams, credit flow control, 3-way handshake
- Slow-start congestion avoidance
- UDP is connectionless and simple. No flow/error control.

Homework

- Read section 6.4
- Solve problems 18, 19, 20, 21