ATM Signaling

Raj Jain
Professor of Computer and Information Science

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Types of signaling
- Call Endpoints: Address Formats
- Call setup/release
- Traffic Contract: Bandwidth, Quality of Service
- Signaling Mechanisms: Message formats
Signaling

- Signal = Control
- Signaling in telephone networks = Control messages in computer networks
- Examples:
 - Connection setup request = Off-hook signal from telephone to switch
 - Connection setup acknowledge = Dial tone
 - Destination address = Pulse or tone dialing
 - Destination busy = Busy tone
 - Destination Available = Ringing tone
Signaling Channel

- In-band signaling ⇒ Signaling over the same channel as payload
- Out-of-band signaling ⇒ Separate channels for signaling (but may be same physical circuits)
- Common Channel Signaling (CCS) ⇒ Separate circuits for signaling ⇒ Allows several new functions, such as 800
Signaling Modes

- **Associated Mode:** CCS follows the same path as payload
- **Nonassociated Mode:** CCS uses a separate network
Signaling Standards

- Q.931 = Basic Call Control for ISDN
- Q.932 = Extends/uses Q.931 for supplementary services (call forwarding, etc)
- Q.933 = Q.931 Extension/subset for Frame-relay
- Signaling inside the network is more sophisticated than that between the network and the subscriber
- Digital Subscriber Signaling System 1 (DSS1) = Call control signaling over the D channel = Q.931 + Q.932 + lower layers
- Signaling System 7 (SS7) deals with inside the network while DSS1 deals with outside.
- Q.2931 = Q.93B = Basic Call Control for B-ISDN
Signaling Channels

- Reserved VPI/VCI
 - x/1 = Meta-signaling
 - x/2 = Broadcast signaling (not used initially)
 - 0/5 = ATM endpoint to local network signaling
 both point-to-point and point-to-multipoint signaling
 - x/5 = point-to-point signaling with other endpoints and other networks
Meta-Signaling

- Used to setup signaling channels
- All meta-signaling messages are one cell long and have VPI/VCI = 0/1
- Sets up 3 types of signaling channels:
 - Point-to-point
 - General broadcast
 - Selective broadcast
- Procedures to:
 - Set up new signaling channels
 - Release channels
 - Verify channels
ATM Addresses

- ATM Forum species three NSAP-like address formats:
 - DCC ATM Format
 - ICD ATM Format
 - E.164 ATM Format
- NSAP = Network Service Access Point

ATM Addresses

<table>
<thead>
<tr>
<th>Data Country Code (2B)</th>
<th>High-Order DSP (10B)</th>
<th>End System ID (6B)</th>
<th>Selector (1B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International Code Designator (2B)</th>
<th>High-Order DSP (10B)</th>
<th>End System ID (6B)</th>
<th>Selector (1B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E.164 Number (8 B)</th>
<th>High-Order DSP (4B)</th>
<th>End System ID (6B)</th>
<th>Selector (1B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFI: Initial Domain Id

Domain Specific Part (DSP)
Addressing

- Authority and Format Identifier (AFI)
 - 39 = ISO DCC, 47 = British Standards Institute ICD, 45 = ITU ISDN
- Initial Domain Identifier (IDI). Domain Specific Part (DSP)
- ISDN uses E.164 numbers (up to 15 BCD digits)
- ATM forum extended E.164 addresses to NSAP format. E.164 number is filled with leading zeros to make 15 digits. A F_{16} is padded to make 8 bytes. AFI and DSP are added.
- End System Identifier (ESI): 48-bit IEEE MAC address
- Selector is for use inside the host and is not used for routing.
- All ATM addresses are 20 bytes long.
- ATM forum removed the division of DSP into areas, etc.
- Private networks must support all three formats
 Type of Number field = Unknown
 Numbering Plan Indication field = ISO NSAP

- Public networks must support native E.164 and may optionally support three NSAP-encoded formats. For E.164:
 Type of Number field = International number
 Numbering Plan Indication field = Recommendation E.164

- If only native E.164 addresses, subaddress field in signaling messages used to convey private ATM address across.

- One Transit network selection possible using carrier identification code field.
E.164 Numbers

- North American Numbering Plan (NANP): 1(614)-555-1212
- E.163 numbering plan for telephony: 12 digits
- E164 numbering plan for ISDN: 15 digits
- Defined in ITU-T recommendation E.164 for ISDN
- ISDN numbers uniquely identify interfaces to public networks
- Several ISDN numbers can identify the same interface
- ISDN signaling allows ISDN number followed by a subaddress (extension) of upto 40 digits
- Administered by public networks (Therefore, are not easily available for private network use)
NSAP is a Misnomer!

- NSAP = Network Service Access Point
 Identifies network layer service entry
- SNPA = Subnetwork point of attachment
 Identifies the interface to subnetwork
- SNPA address (or part of it) is used to carry the packet across the network.
- CLNP uses NSAP to deliver the packet to the right entity inside the host.
- ATM uses NSAP-like encoding but ATM addresses identify SNPA and not NSAP.
User and switch register addresses using Interim Local Management Interface (ILMI) = Simple Network Management Protocol (SNMP)

- User
 - ColdStart Trap
 - GetNext Request
 - GetNext Response
 - Set Request
 - Response

- Switch
 - Initialize
 - What is your address?
 - My address is AA-...
 - Use prefix +1 614-...
 - Sure. Will do.

Similar activities can occur in the reverse direction.
Connection Types

- Permanent and Switched
- Point to point
 - Symmetric or asymmetric bandwidth (Uni or bidirectional)
- Point-to-multipoint: Data flow in one direction only. Data replicated by network.
 - Leaf Initiated Join (LIJ) or non-LIJ
Connection Setup

Setup
Call Proceeding
Connect
Connect Ack

Setup
Call Proceeding
Connect
Connect Ack

Setup
Call Proceeding
Connect
Connect Ack

Setup
Call Proceeding
Connect
Connect Ack
Release
Release Complete

Accept
Reject

The Ohio State University
Raj Jain
Connection Release (cont)

Connection Terminated

Release complete

Release complete
Multipoint Connection Setup

1. Connect to the first party

 Setup
 Call Proceeding
 Connect
 Connect Ack
2. Add the next party. The party accepts.
3. Add the next party. The party Rejects.

Add Party

Add Party Reject

Add Party Reject

Setup

Call Proceeding

Release

Release Complete
Multipoint Connection Release

1. Root Drops a party
 - Drop Party
 - Drop Party Ack
 - Release complete

2. Root Drops the last party
 - Release complete

Release complete
3. A party drops out

Drop Party

Drop Party ack

4. Network clears the call

Connection Terminated

Drop Party

Drop Party Ack

Release

Release complete

Release

Release complete

Release complete
Leaf Initiated Join (LIJ)

1. Root sets up a **Network LIJ** call
 The setup message contains LIJ parameters
Leaf Join to an Active LIJ Call

Leaf Setup request
Call Proceeding
Connect
Connect Ack

No root notification
Leaf Join to an Inactive LIJ Call

Leaf Setup
Setup
Call Proceeding
Connect
Connect Ack

Leaf setup
Setup
Call Proceeding
Connect
Connect Ack

Leaf setup
Setup
Call Proceeding
Connect
Connect Ack

1
2

Raj Jain
Leaf Join to a non-LIJ Call

Leaf Setup -> Add Party -> Add Party Ack

Leaf setup -> Add Party -> Add Party Ack

Leaf setup -> Setup -> Call Proceeding -> Connect -> Connect Ack

The Ohio State University

Raj Jain
Message Format: Q.2931

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Discriminator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>Len of Call Ref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Reference Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message (Content) Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Information Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Message Format

- Protocol Discriminator (1 Byte) = Distinguishes Q.2931 messages from other messages
 - 08 = Q.931
 - 09 = Q.2931
- Call reference (4 bytes) : Identifies call to which this message is related to. One user may have many calls simultaneously.
 - Flag = 1 Message is from call reference originator
 - Flag = 0 Message is to call reference originator
- Message Type (2 Bytes): Many types, e.g., connect, call proceeding, setup, release, etc.
- Message Length (2 Bytes): Length of contents of this message
Sample Message Types

<table>
<thead>
<tr>
<th>Bits 876</th>
<th>Bits 54321</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td></td>
<td>Call establishment messages</td>
</tr>
<tr>
<td></td>
<td>00010</td>
<td>Call proceeding</td>
</tr>
<tr>
<td></td>
<td>00111</td>
<td>Connect</td>
</tr>
<tr>
<td></td>
<td>01111</td>
<td>Connect Ack</td>
</tr>
<tr>
<td></td>
<td>00101</td>
<td>Setup</td>
</tr>
<tr>
<td></td>
<td>01101</td>
<td>Setup Ack</td>
</tr>
<tr>
<td>010</td>
<td></td>
<td>Call Clearing Messages</td>
</tr>
<tr>
<td></td>
<td>01101</td>
<td>Release</td>
</tr>
<tr>
<td></td>
<td>11010</td>
<td>Release complete</td>
</tr>
<tr>
<td>011</td>
<td></td>
<td>Information</td>
</tr>
<tr>
<td></td>
<td>10101</td>
<td>Status Inquiry</td>
</tr>
<tr>
<td></td>
<td>11101</td>
<td>Status</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>Reserved for extension</td>
</tr>
</tbody>
</table>
Information Element Formats

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Element Identifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Ext</td>
<td>Coding</td>
<td>Standard</td>
<td>IE Instruction Field</td>
<td>Flag</td>
<td>Res</td>
<td>IE Action Ind</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>Length of contents of IE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+</td>
<td>Contents of IE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Information Elements

<table>
<thead>
<tr>
<th>Bits 87654321</th>
<th>Information Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>01110000</td>
<td>Called party number</td>
</tr>
<tr>
<td>01110001</td>
<td>Called party subaddress</td>
</tr>
<tr>
<td>01111000</td>
<td>Transit network selection</td>
</tr>
<tr>
<td>01101100</td>
<td>Calling party number</td>
</tr>
<tr>
<td>01101101</td>
<td>Calling party subaddress</td>
</tr>
<tr>
<td>01011000</td>
<td>AAL parameter</td>
</tr>
<tr>
<td>01011001</td>
<td>ATM Traffic Descriptor</td>
</tr>
<tr>
<td>01011010</td>
<td>Connection Identifier</td>
</tr>
<tr>
<td>01011100</td>
<td>Quality of Service Parameter</td>
</tr>
<tr>
<td>01000010</td>
<td>End-to-end transit delay</td>
</tr>
<tr>
<td>01011110</td>
<td>Broadband bearer capability</td>
</tr>
</tbody>
</table>
Information Elements

- AAL Parameters (4-20B): E.g., max SDU size
- ATM User Cell rate (12-30B): forward/backward avg/peak cell rates
- Broadband bearer capability (6-7B): Requested bearer characteristics. CBR or VBR. Susceptible to clipping.
- Broadband High-Layer Information (4-13B): Used for compatibility checking by the receiving end-point. Transported transparently across the network.
- Broadband Repeat Indicator (4-5B): How to interpret repeated elements
- Broadband Low-Layer Information (4-13B): Used for compatibility checking by the receiving end-point, at lower layers, e.g., X.25
- Call Party Number (Max 25 B)
- Called Party Subaddress (4-25 B): Used outside the network
- Calling Party Number (4-26B)
- Calling party subaddress (4-25B)
- Cause: Exception reason
- Call State: current state
- Connection Identifier (9B): VPCI/VCCI
 VPCI = VP Connection ID = VP Id (initially)
 Different (later) with VP concentrators
 One VP = Multiple lower speed links
 Contains additional bits to select among multiple links
QoS Parameters (6B)

- Broadband Sending complete (4-5B): Indicates completion of the called party number. Ignored by ATM Forum.

Transit Network Selection (4-8B)

- Endpoint Reference (4-7B): Identifies individual endpoint of a multipoint connection

- Endpoint State: State of an endpoint in a point-to-multipoint connection

- End-to-end Transit Delay

- Restart Indicator: Identifies class of facility to be restarted
Sample Message Contents

- Setup message: Call reference, called party address, calling party address, traffic characteristics, quality of service
- Call proceeding message: Call reference, VPI/VCI
- Connect Message: Call reference. Indicates call acceptance.
- Connect Acknowledge: Call reference.
Bandwidth Contract

- User specifies 12 leaky bucket parameters

<table>
<thead>
<tr>
<th></th>
<th>Forward</th>
<th>Backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLP=0</td>
<td>Peak Cell Rate</td>
<td>Peak Cell Rate</td>
</tr>
<tr>
<td></td>
<td>Sustainable Cell Rate</td>
<td>Sustainable Cell Rate</td>
</tr>
<tr>
<td></td>
<td>Maximum Burst Size</td>
<td>Maximum Burst Size</td>
</tr>
<tr>
<td>CLP=0+1</td>
<td>Peak Cell Rate</td>
<td>Peak Cell Rate</td>
</tr>
<tr>
<td></td>
<td>Sustainable Cell Rate</td>
<td>Sustainable Cell Rate</td>
</tr>
<tr>
<td></td>
<td>Maximum Burst Size</td>
<td>Maximum Burst Size</td>
</tr>
</tbody>
</table>
AAL Parameters

- AAL 1 Parameters
 - CBR Rate
 - Clock recovery type
 - Error correction type
 - Structured Data Transfer
 - Partially filled cells
- AAL 3/4 Parameters
 - MID Size
AAL Parameters

- AAL 3/4/5 Parameters
 - Forward maximum SDU size
 - Backward maximum SDU size
 - Mode: message or streaming
 - Service Specific Convergence Sublayer (SSCS) Type
 - Null, Assured SSCOP, non-assured SSCOP, or Frame relay
Protocol Stacks

- Signaling AAL (SAAL)
 - Service specific coordination function (SSCF): Provides interface to Q.2931
 - Service specific connection-oriented protocol (SSCOP): Error and loss recovery
 - AAL Common Part (AAL CP): Error detection

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Q.2931</th>
<th>TCP/IP</th>
<th>LMI, SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSCF</td>
<td>Q.2130</td>
<td>AAL</td>
<td>AAL</td>
</tr>
<tr>
<td>SSCOP</td>
<td>Q.2110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAL CP</td>
<td>I.363</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ATM I.361
- SONET, DS1, E1, etc. I.432
UNI 3.1 Features

- Align with Q.2931
- Use new version of SSCOP
UNI 4.0 Features

- Point-to-point and point-to-multipoint calls
- Leaf initiated join capability
- Notification of end-to-end connection completion
- ATM Anycast capability
- Multiple signalling channels
- Switched virtual path service
- Proxy signaling
- Frame discard capability
- ABR signaling for point-to-point calls
- Traffic parameter negotiation
Summary

- NSAP address formats
- Call setup and release: Point-to-point, point-to-multipoint, Leaf-initiated join
- Q.2931 Message formats and information elements
- Traffic contracts
References

- RFC 1237, “Guidelines for NSAP allocation in the Internet”
B-ISDN Recommendations

- E.164 Numbering plan for the ISDN era
- I.113 B-ISDN vocabulary of terms
- I.150 B-ISDN ATM Functional Characteristics, 1993
- I.211 B-ISDN Service Aspects, 1993
- I.311 B-ISDN General Network Aspects, 1993
- I.327 B-ISDN Functional Architecture, 1993
- I.362 B-ISDN ATM Adaptation Layer (AAL) Functional Description, 1993
- I.363 B-ISDN ATM Adaptation Layer (AAL) specification, 1993
- I.413 B-ISDN User-Network Interface, 1993
- Q.2110 B-ISDN SAAL Service Specific Connection Oriented Protocol (SSCOP)
- Q.2130 B-ISDN SAAL Service Specific Coordination function (SSCF)
- Q.2610 B-ISDN Usage of Cause and Location in B-ISDN user part and DSS2
- Q.2931 B-ISDN DSS2 User-network Interface (UNI) Layer 3 Specification for Basic call/connection control
Q.2951 Stage 3 description for number identification supplementary services using B-ISDN DSS2 Basic Call

Q.2961.1 B-ISDN DSS2 Negotiation/Modification: Additional Traffic Parameter Indications

Q.2962, Negotiation of traffic and QoS parameters (during call/connection establishment)

Q.2963, Renegotiation/modification of traffic and QoS parameters (for already established calls/connections)

Q.2964, B-ISDN look-ahead

Q.2971 B-ISDN DSS2 UNI Layer 3 Specificatin for Point-to-multipoint Call/connection control

Q.298x, Multiconnection calls
Quiz

T F Please check True/False

1. ❑ ❑ Inband signaling refers to sending control messages on the same physical channels as the data.

2. ❑ ❑ In associated mode signaling, control follows the same physical path as data.

3. ❑ ❑ Meta-signaling is used to send nonsignaling messages during connection setup.

4. ❑ ❑ An ATM NSAP address identifies the network service access point in an ATM end system.

5. ❑ ❑ Complete ATM NSAP address is hardcoded in each end system.

6. ❑ ❑ UNI 4.0 allows some one tune into a VC without informing the root.
7. □ □ Bandwidth contract in UNI consists of 12 forward and backward leaky bucket parameters
8. □ □ The AAL used for signaling SAAL and AAL5 have nothing in common
9. □ □ SSCOP refers to the policing protocol used in ATM networks.
10. □ □ UNI 4.0 allows anycast capability.