ATM Networks: An Overview

Raj Jain
Professor of Computer and Information Science

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
- ATM: Overview
- ATM Protocol Layers
- Adaptation Layers
- LAN Emulation
- Network Interfaces
ATM Networks: Overview

- STM = Synchronous Transfer Mode,
 ATM = Asynchronous Transfer Mode

- Allows any-speed and even variable rate connection

- Broadband = Rate greater than primary rate (1.5 Mbps)

- ATM = Short fixed size 53-byte cells

- Connection oriented ⇒ Virtual Channels (VC)
- Labels vs addresses
 ⇒ Better scalability in number of nodes

- Slotted system ⇒ Better scalability in distance-bandwidth
- Switches vs routers
 ⇒ Cheaper due to fixed size, short address, simplicity
- Seamless ⇒ Same technology for LAN, MAN, WAN
- Data, voice, video integration
- Everyone else is doing it
History of ATM

- 1980: Narrowband ISDN adopted
- Early 80's: Research on Fast Packets
- Mid 80's: B-ISDN Study Group formed
- 1986 ATM approach chosen for B-ISDN
- June 1989: 48+5 chosen (64+5 vs 32+4).
- October 1991: ATM Forum founded
- July 1992: UNI V2 released by ATM Forum
- 1993: UNI V3 and DXI V1
- 1994: B-ICI V1
ATM Network Interfaces

- User to Network Interface (UNI):
 - Public UNI, Private UNI

- Network to Node Interface (NNI):
 - Private NNI (P-NNI)
 - Public NNI = Inter-Switching System Interface (ISSI)
 - Intra-LATA ISSI (Regional Bell Operating Co)
 - Inter-LATA ISSI (Inter-exchange Carriers)
 \[\Rightarrow\] Broadband Inter-Carrier Interface (B-ICI)
 - Data Exchange Interface (DXI)
 - Between packet routers and ATM Digital Service Units (DSU)
Protocol Layers

ATM Adaptation Layer
ATM Layer
Physical Layer

ATM Adaptation Layer
ATM Layer
Physical Layer

ATM Adaptation Layer
ATM Layer
Physical Layer
Protocol Layers

- The ATM Adaptation Layer
 - How to break application messages to cells
- The ATM Layer
 - Transmission/Switching/Reception
 - Congestion Control/Buffer management
 - Cell header generation/removal at source/destination
 - Reset connection identifiers for the next hop (at switch)
 - Cell address translation
 - Sequential delivery
ATM Cell Header Format

- **GFC**=Generic Flow Control
 - (Was used in UNI but not in NNI)
- **VPI/VCI=0/0** ⇒ Idle cell; 0/n ⇒ Signalling
- **HEC**: $1 + x + x^2 + x^8$

<table>
<thead>
<tr>
<th>GFC/VPI</th>
<th>VPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPI</td>
<td>VCI</td>
</tr>
<tr>
<td>VCI</td>
<td>VCI</td>
</tr>
<tr>
<td>VCI</td>
<td>PTI</td>
</tr>
<tr>
<td>PTI</td>
<td>CLP</td>
</tr>
</tbody>
</table>

Header Error Check (HEC)

Payload
Connection Identifiers

- Each cell contains a 24/28-bit connection identifier
 First 8/12 bits: Virtual Path, Last 16 bits: Virtual Channel
- VP service allows new VC's w/o orders to carriers
Connections Vs Channels

- VP connections (VPCs) = Series of VP Links
- VC connections (VCCs) = Series of VC Links to make an end-to-end link
- VC = VCL or VCC, VP=VPL or VPC
- Call = Multiple connections
VP/VC Assignment/Use

![Diagram showing VP/VC assignment and usage]

Table: VP/VC Assignment

<table>
<thead>
<tr>
<th>Port</th>
<th>In Port</th>
<th>VPI/VCI</th>
<th>Out Port</th>
<th>VPI/VCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0/37</td>
<td>3</td>
<td>1/23</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0/34</td>
<td>4</td>
<td>0/56</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0/23</td>
<td>5</td>
<td>0/65</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0/56</td>
<td>6</td>
<td>4/76</td>
</tr>
</tbody>
</table>

The Ohio State University

Raj Jain
Header Error Check (HEC)

- Protects header only
- Optional Correction mode: Correct one bit errors if no earlier errors
- Discard cells with bad HEC
- Used for cell delineation in SONET
- Recalculated on each hop

No Error → Correction Mode → No Error → Detection Mode → Error → Correct

No Error → Correction Mode → No Error → Detection Mode → Error → Correct

The Ohio State University

Raj Jain
Problem: Need new networking s/w for ATM
Solution: Let ATM network appear as a virtual LAN
LAN emulation implemented as a device driver below the network layer
- NDIS = Network Driver Interface Specification
- ODI = Open Datalink Interface
Features

- One ATM LAN can be multiple virtual LANs
- Logical subnets interconnected via routers
- Need drivers in hosts to support each LAN
- Only IEEE 802.3 and IEEE 802.5 frame formats supported
- Doesn't allow passive monitoring
- No token management (SMT), collisions, beacon frames

| LE Header (2 Bytes) | Standard IEEE 802.3 or 802.5 Frame |
1. Clients get recipient’s address from LES and setup a VC.

2. Clients send messages on the VC.

3. Messages for ATM clients are delivered directly.

4. Messages for non-ATM clients are forwarded through a bridge.
Operation

- Initialization: Client gets Server's address from a well known ATM address
- Registration: Client sends a list of its MAC addresses to Server
- Address Resolution: Client sends ARP request to Server
 - Server, Clients, Bridges answer ARP
 - Client setups a direct connection
- Broadcast/Unknown Server (BUS): Forwards multicast traffic to all members
- LAN/ATM switches provides bridging functions

LAN Emulation Configuration 1

Diagram:

- Token Ring Stations
- Ethernet Stations
- Ethernet/ATM Switch
- ATM Switch
- ATM Stations
Virtual LANs

- Group of users that appear to be interconnected by one LAN
 One LAN = One broadcast domain
- They may be on physically different LANs
- Stations can be grouped by:
 - All stations that have the same IP subnet address
 - All stations that are connected to the same switch port
 - Stations whose specific addresses are specified
ATM Virtual LANs

- Physical View
 - Router
 - ATM Switch
 - LANE Server A
 - B1
 - A2
 - LANE Server B
 - B2

- Logical View
 - Router
 - A1
 - B1
LAN Emulation: Summary

- LAN emulation allows current applications to run on ATM networks without changes
- Multiple virtual LANs on one ATM network
- Disadvantage: ATM is hidden from applications
 \[\Rightarrow\] Can’t use new ATM services
IP Over ATM
IP Over ATM

- ATM similar to point-to-point WANs.
 Simpler than LAN emulation
- IP address: 123.145.134.65
 ATM address: ...1-614-999-2345-...
- Issue: IP Address ⇔ ATM Address translation
 - Address Resolution Protocol (ARP)
 - Inverse ATM ARP: VC ⇒ IP Address
- Solution: Logical IP Subnet (LIS) Server
- Ref: RFC 1577
Clients within LIS use direct VCs
All traffic between LIS passes through a router
ATM AAL5 PDU size = 9180 + 8 LLC/SNAP header
Problem: Need router even if ATM connection between LIS
Solution: Routing Over Large Clouds (ROLC)
ARP Over ATM

- Only one ATM ARP server per subnet
 ⇒ No database synchronization issues
- Clients are configured with server’s ATM address
- Clients setup a VC with the server
- Server sends an inverse ARP request
 (What’s your IP Address?)
- Client responds with its IP Address
- Clients ask server by ARP request
 (What’s ATM address of 123.145.134.65?)
- Server replies with ATM address
- Server sends NAK if not in table
- ARP requests are NOT broadcast to all LIS members
ARP Database Maintenance

- Clients register with the server at startup
- Can use ARP requests to update entry for requester
- Entries at clients age out after 15 minutes
- Entries at servers age out after 20 minutes
- Server sends inverse ARP on active VC before aging out
- Otherwise clients resend registration every 20 minutes
IP Multicast/Broadcast

- No broadcast or multicast in LIS
- IP multicast/broadcast packets handled as in WAN
- Clients must process broadcasts/multicasts as if addressed to them
- No mappings from IP multicast to ATM multicast services
- MBONE and IP tunneling operate over ATM as if on WAN
Virtual circuits in place of real circuits

IP to ATM address translation
 ⇒ ARP and inverse ARP

Clients register addresses with server

Broadcasts are expensive
 ⇒ Not used
Summary

- ATM Overview: History, Why and What
- Interfaces: PNNI, NNI, B-ICI, DXI
- Protocol Layers: AAL, ATM, Physical layers, Cell format
- LAN Emulation
- IP over ATM
ATM Books

ATM Books (Cont)

- *Asynchronous Transfer Mode: Bandwidth for the Future*, Telco Systems, (800)221-2849 or (617)551-0300.
References: ATM Overview

References: LAN Emulation

RFCs and Internet Drafts

- RFC1626, "Default IP MTU for use over ATM AAL5" by R. Atkinson, 05/19/1994, 5 pp.
RFCs and Internet Drafts

- Internet Draft, "Integrated Services IP Multicasting over ATM," 07/07/1995, <draft-milliken-ipatm-services-00.txt>
- Internet Draft, "IPv6 multicast over ATM," 06/21/1995, <draft-armitage-ipatm-ipv6mc-00.txt>
RFCs and Internet Drafts

- Internet Draft, "Using the MARS to support IP Unicast over ATM," 06/14/1995, <draft-armitage-ipatm-mars-unicast-01.txt>
- Internet Draft, "Issues surrounding a new encapsulation for IP over ATM.,” 06/26/1995, <draft-armitage-ipatm-encaps-02.txt>
- Internet Draft, "IP Broadcast over ATM Networks.,” 07/07/1995, <draft-smith-ipatm-bcast-01.txt>
RFCs and Internet Drafts

- Internet Draft, "Router Architecture Extensions for ATM: Overview," 03/03/1995, <draft-katsube-router-atm-overview-00.txt>
- Internet Draft, "Inter-Domain Routing over ATM networks," 02/16/1995, <draft-rekhter-idr-over-atm-00.txt>
- Internet Draft, "IP Architecture Extensions for ATM," 07/06/1995, <draft-rekhter-ip-atm-architecture-01.txt>
- Internet Draft, "Conventional IP over ATM," 03/08/1995, <draft-ohta-ip-over-atm-01.txt>
RFCs and Internet Drafts

- Internet Draft, "Support for Multicast over UNI 3.1 based ATM Networks," 05/31/1995, <draft-ietf-ipatm-ipmc-05.txt>
- Internet Draft, "Definitions of Supplemental Managed Objects for ATM Management," 07/06/1995, <draft-ietf-atommib-atm2-02.txt>
- Internet Draft, "Definitions of Textual Conventions for ATM Management," 07/06/1995, <draft-ietf-atommib-atm2TC-00.txt>
B-ISDN Recommendations

- I.113 Vocabulary of Terms for Broadband Aspects of ISDN, 1991
- I.121 Broadband Aspects of ISDN, 1991
- I.150 B-ISDN ATM Functional Characteristics, 1993
- I.211 B-ISDN Service Aspects, 1993
- I.311 B-ISDN General Network Aspects, 1993
- I.327 B-ISDN Functional Architecture, 1993
B-ISDN Recommendations

- I.362 B-ISDN ATM Adaptation Layer (AAL) Functional Description, 1993
- I.363 B-ISDN ATM Adaptation Layer (AAL) specification, 1993
- I.364 Support of Broadband Connectionless Data Service on B-ISDN, 1993
- I.371 Traffic Control and Congestion Control in B-ISDN, 1993
- I.413 B-ISDN User-Network Interface, 1993
- I.414 Overview of Recommendations on Layer 1 for ISDN and B-ISDN Customer Access, 1993
B-ISDN Recommendations

- I.555 Frame Relay and ATM Interworking
- I.580 General Arrangements for Interworking Between B-ISDN and 64 kbps Based ISDN, 1993
- I.610 B-ISDN Operation and Maintenance Principles and Functions, 1993
- Q.2931 B-ISDN Call Control
- Q.SAAL Signaling AAL
ANSI Standards

- T1.624, "Broadband ISDN User-Network Interfaces: Rates and Formats Specification."
- T1.627, "Broadband ISDN - ATM Layer Functionality and Specification."
ATM Forum Specs (Approved)

- ATM B-ISDN Intercarrier Interface (B-ICI), V1.0, June 1, 1993.
- ATM DXI Specification, V1.0, August 1993, ATM Forum, (415)-578-6860
- ATM DS1 PHY V1.0 specs
- ATM 52 Mbps Category 3 UTP
- ATM 155 Mbps Category 5 UTP V1.0 Specification
- LAN Emulation over ATM V1.0 Specification
ATM Forum Specs (Approved)

- Interim Inter-Switch Signaling Protocol (IISP) V1.0 Specification
- 6312 kbps UNI V1.0 Specification
- Introduction to ATM Forum Test Specifications V1.0
- PICS Proforma for the DS3 Physical Layer Intervade V1.0 Specification
- PICS Proforma for the 100 Mbps Multimode Fibre Physical Layer Interface V1.0 Specification
- PICS Proforma for the SONET STS-3c Physical Layer Interface V1.0 Specification
ATM Forum Specs (Final)

- Conformance Abstract Test Suite for ATM Layer of Intermediate Systems
- Interoperability Abstract Test Suite for the ATM Layer
- Interoperability Abstract Test Suite for the Physical Layer
- PICS Proforma for the DS1 Physical Layer Interface
- PICS Proforma for the UNI ATM Layer
- E3 Public UNI
- LAN Emulation Client Management Specification

Documents listed above have been sent for final vote (7/95)
Information Sources

- ATM Forum (415)578-6860 info@atmforum.com
 - Fax on Demand: (415)-688-4318
 - http://WWW.ATMFORM.COM
 - Paris: +33 1 46 39 56 26 cguyot@interop.com
 - Tokyo: +81 3 3438 3694 kyb01621@niftyserve.or.jp
- Internet Engineering Task Force
 - IP over ATM: atm-request@hpl.hp.com
 - Routing over Large Clouds: rolc-request@nsco.netcom.com
 - atommib-request@thumper.bellcore.com
 - RFCs: mail-server@nisc.sri.com (Send Help in message)
 - Draft RFC's: Internet-Drafts@cnri.reston.va.us
Information Sources

- Internet News: cell-relay-request@indiana.edu
 - comp.dcom.cell-relay@indiana.edu
- Frame Relay Forum: frf@interop.com
- Switched Multimegabit Data Service (SMDS): sig@interop.com
Quiz

T F Please check True/False

1. ATM cells always arrive periodically at the same time.
2. ATM cells are always of the same size (bytes) at all speeds.
3. ATM cells are always of the same time (seconds) at all speeds.
4. Each ATM cell contains 4 bytes of destination address.
5. A VP switch uses only the VP field for switching.
6. A VC switch uses only the VC field for switching.
7. The VP field in the cell is changed at each hop.
8. Whenever a cell arrives with errors, HEC will correct it.
9. The ATMswitching is done in the AAL layer.
10. The ATM layer is responsible for segmenting user messages into fixed size cells.
Quiz

T F Please check True/False

1. ❑ ❑ LANE allows ATM stations to talk to existing Ethernet stations
2. ❑ ❑ FDDI is not supported by ATM LANE
3. ❑ ❑ ATM stations can not talk to stations on FDDI
4. ❑ ❑ On an emulated Ethernet, you can monitor collisions
5. ❑ ❑ LES broadcasts unknown queries to all members of the emulated LAN via BUS
6. ❑ ❑ In LANE, all broadcasts are sent to BUS
7. ❑ ❑ All traffic between LIS’s passes through routers
8. ❑ ❑ You will not need a router, if all hosts of an IP network are on a single ATM network.
9. ❑ ❑ Unknown ARP requests are broadcast to all LIS members