1. Suppose you have a standard normal belief about an unknown parameter \(\theta \), \(p(\theta) = \mathcal{N}(\theta; 0, 1^2) \). You are asked to give a point estimate \(\hat{\theta} \) of \(\theta \), and are told the penalty for overestimation is more lenient than for underestimation.

\[
\ell(\hat{\theta}, \theta) = \begin{cases}
(\theta - \hat{\theta})^2 & \hat{\theta} < \theta; \\
\hat{\theta} - \theta & \hat{\theta} \geq \theta
\end{cases}
\]

What is the Bayesian estimator?

Consider the following generalization of the above loss, with a constant multiplicative term \(c \geq 0 \) on the second term:

\[
\ell(\hat{\theta}, \theta; c) = \begin{cases}
(\theta - \hat{\theta})^2 & \hat{\theta} < \theta; \\
c(\hat{\theta} - \theta) & \hat{\theta} \geq \theta
\end{cases}
\]

Plot the Bayesian estimator as a function of \(c; 0 < c < 10 \). Interpret the results.

What should you do if \(c = 0 \)?

2. (Curse of dimensionality.) Consider a \(d \)-dimensional, zero-mean, spherical multivariate Gaussian distribution:

\[p(x) = \mathcal{N}(x; 0, I_d). \]

Equivalently, each entry of \(x \) is drawn iid from a univariate standard normal distribution.

In familiar small dimensions \(d \leq 3 \), “most” of the vectors drawn from a multivariate Gaussian distribution will lie near the mean. For example, the famous 68–95–99.7 rule for \(d = 1 \) indicates that large deviations from the mean are unusual. Here we will consider the behavior in larger dimensions.

- Draw 10,000 samples from \(p(x) \) for each dimension in \(d \in \{1, 5, 10, 50, 100\} \), and compute the length of each vector drawn: \(y_d = \sqrt{x^\top x} = (\sum_{i=1}^{d} x_i^2)^{1/2} \). Estimate the distribution of each \(y_d \) using either a histogram or a kernel density estimate (in MATLAB, hist and ksdensity, respectively). Plot your estimates. (Please do not hand in your raw samples!) Summarize the behavior of this distribution as \(d \) increases.

- The true distribution of \(y_d^2 \) is a chi-square distribution with \(d \) degrees of freedom (the distribution of \(y_d \) itself is the less-commonly seen chi distribution). Use this fact to compute the probability that \(y_d < 5 \) for each of the dimensions in the last part.

- For \(d = 1000 \), compute the 5th and 95th percentiles of \(y_d \). Is the mean \(x = 0 \) a representative summary of the distribution in high dimensions? This behavior has been called “the curse of dimensionality.”

3. (Laplace approximation.) Find a Laplace approximation to the gamma distribution:

\[p(\theta \mid \alpha, \beta) = \frac{1}{Z} \theta^{\alpha-1} \exp(-\beta \theta). \]

Plot the approximation against the true density for \((\alpha, \beta) = (3, 1) \).
The true value of the normalizing constant is

\[Z = \frac{\Gamma(\alpha)}{\beta^\alpha} . \]

If we fix \(\beta = 1 \), then \(Z = \Gamma(\alpha) \), so we may use the Laplace approximation to estimate the Gamma function. Analyze the quality of this approximation as a function of \(\alpha \).

Read the Wikipedia article about Stirling’s approximation. Do you see a connection?