Research Objectives, Approach and Results

The goal of this research is to develop infrastructure and scheduling and verification techniques to enforce non-bypassable security of systems’ execution constraints within common off-the-shelf platforms.

We are developing detailed models of the interactions among computations and the OS features they use, to provide at once:
1. precise enforcement of execution isolation
2. flexible system-specific isolation policies
3. leverage for learning in uncertain settings

Our approach targets common off-the-shelf operating systems (i.e., Linux) and important interaction scenarios (e.g., CPU contention and interrupt handling) relevant to many real-world systems.

Approach and Impact

New approach

- Schedule all relevant components under a single custom kernel policy
- Use decision models / learning to design the custom scheduling policy
- Exploit repeated structure in the resulting system state space

Research Impact

- Achieves precise isolation without requiring static partitioning
- Discovers and refines appropriate scheduling decision functions
- Reduces cost for both verification (model checking) and learning

Scheduling policy design method:
1. Profile relevant component behaviors (e.g., distributions of durations of atomic actions),
2. Evaluate a decision model that encodes the interactions among system components
 - E.g., a MDP parameterized with profiles
 - Produces a scheduling decision function
3. Apply quasi-cyclic reductions to reduce and bound the resulting system state space
4. Apply (potentially timed) model checking to verify properties of the reduced state space
 - Within bounds, out to a finite horizon, etc.
5. Refine scheduling policy (and repeat 3-5)
 - E.g., add constraints to promote verification
 - E.g., use RL: unknown profiles, interactions