Contents

1 Definition of VC Dimension 1
 1.1 Motivation ... 1
 1.2 Definition .. 1

2 Examples ... 1

3 No Free Lunch Theorem 2

1 Definition of VC Dimension

1.1 Motivation
So far, we have only characterized the learnability of concept classes over the Boolean variables \{0, 1\}^n. But what about concept classes over numerical inputs (e.g. \(X = \mathbb{R}^n\))?

Example 1 \(n\) dimensional boxes \([a_1, b_1] \times [a_2, b_2] \times \ldots [a_n, b_n]\). They can be described by only \(2n\) parameters. Can we apply our previous strategies to decide its learnability? Is such a class learnable?

The definition of VC Dimension will help us to answer these questions.

1.2 Definition

Definition 2 For any concept class \(C\) over \(X\), and any \(S = \{x_1, x_2, \ldots, x_m\} \subset X\), all the dichotomies realized by \(C\), is defined as:

\[
\Pi_C(S) = \{(c(x_1), \ldots, c(x_m)) : c \in C\}
\]

If \(\Pi_C(S) = \{0, 1\}^m\) (where \(m = |S|\)), we say that \(S\) is shattered by \(C\). Thus, \(S\) is shattered by \(C\) if \(C\) realizes all possible dichotomies of \(S\).

The Vapnik-Chervonenkis (VC) dimension of a representation class \(C\), denoted as \(VCD(C)\), is the cardinality \(d\) of the largest set \(S\) that shattered by \(C\). If any large finite sets can be shattered by \(C\), then \(VCD(C) = \infty\). Note that for \(VCD(C)\) to be \(d\), we don’t need to show that \(C\) shatters every sample \(S\) with size \(d\). Showing it does for one set \(S\) is sufficient.

2 Examples

Example 3 \(C\) is the concept class of all functions: \(N \rightarrow \{0, 1\}\). Obviously, \(VCD(C) = \infty\) since \(C\) can shatter any set of finite sizes.

Example 4 \(C\) is set of intervals on the Real line. We see that any possible dichotomies of 2 points can be shattered by an interval. Therefore, the \(VCD(C)\) is at least 2. However, a dichotomy of 3 points, for example: \(\{+, -, +\}\), can’t be shattered by any interval. Therefore, \(VCD(C) = 2\).
Example 5 C is set of halfspaces in R^2.
We can easily see that any three non-colinear points can be shattered by a halfspace (i.e. a linear separator line). Hence, $VCD(C)$ is at least 3. However, a dichotomy of 3 points, as shown in Figure 1, can’t be shattered by any halfspace. Therefore, $VCD(C) = 3$.

In general, VCD of halfspaces in R^n is $n+1$. (Proof in Homework 4).

![Figure 1: Dichotomy of 4 points that is not shattered by halfspaces](image)

Example 6 C is set of axis that aligned rectangles in R^2.
We can easily show that any dichotomy of four points can be shattered by rectangles (by drawing). Hence, $VCD(C)$ is at least 4. However, a dichotomy of 5 as shown in Figure 2, can’t be shattered by any rectangle. Therefore, $VCD(C) = 4$.

![Figure 2: Dichotomy of 5 points that is not shattered by any rectangle](image)

3 No Free Lunch Theorem

Theorem 7 Let C be a concept class of VC dimension d. Then any algorithm that with probability $> 1/7$ produces h s.t. $Pr_{x \in D}[h(x) = c(x)] \geq 1 - \epsilon$ must use $\Omega(d/\epsilon)$ examples.

Idea We will find an adversarial distribution for any algorithm that uses too few examples. In particular, we note that there’s some set S of size d that c shatters. Hence, there’s no bias help given on this set for unknown labels.

Proof
First, we will show that we need $\geq \Omega(d)$ examples and then we’ll refine the same argument to tighten this bound up.

Let D be a uniform distribution over d points $\{x_1, ..., x_d\}$. Since $VCD(C) = d$, there exists a set S of d points that can be shattered by C no matter what labels they have. Therefore, all 2^d possible label
combinations are shattered by C.
Consider the following experiment: fix any PAC-learning algorithm for C and let it observe \(d/2\) different points from \(\{x_1, ..., x_d\}\) to produce a hypothesis \(h\). Then for any \(x_i\) not observed in the algorithms set of examples, the hypothesis disagrees with its label with probability 1/2. The expected error of \(h\) on \(D\) is:

\[
\sum_{i=1}^{d} Pr(x_i) \times (\text{expected error on } x_i) \geq \frac{d}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}.
\]

We want to know with what probability our algorithm will output a hypothesis that does better. In particular, we want to know with what probability \(h\) can achieve error \(\leq \frac{1}{8}\). Let \(p\) be that probability.

We’re going to bound \(p\). We know that:

\[
\frac{1}{4} \leq (\text{expected error of } h) \leq \frac{1}{4}p + (1 - p) \times 1.
\]

Thus, \(p < \frac{6}{7}\). Therefore, with probability \(p > \frac{1}{7}\), the algorithm will output hypothesis with error \(\geq \frac{1}{8}\). This means in order to achieve error \(< 1/8\) with probability \(> 1/7\), we need to use \(\Omega(d/2)\) examples.