CSE 513T 4/10

1. Pitfalls in learning unknown environment
2. Formulation of learning from example histories

1 Note

1. Alex Durgin will give a guest lecture on Thursday
2. Final project presentation sign-up sheet is circulating

2 Recap

\[
\begin{align*}
\bar{x} &= \partial t_{r,0} \quad \partial t_{r,1} \quad \partial t_{r,2} \quad \partial t_{b,0} \quad \partial t_{b,1} \quad \partial t_{b,2} \\
\text{holds}_{r,b}
\end{align*}
\]

\[
t = 5 \quad \rho_x = \begin{bmatrix} 0 & 0 & 1 & * & * & 1 & 0 \end{bmatrix}
\]

\[
t = 6 \quad \rho_x = \begin{bmatrix} 1 & 0 & 0 & 0 & * & * & 0 \end{bmatrix}
\]
Note:
Goal \(\partial t_{r,2} \land \neg \partial t_{r,2} \)
can’t simultaneously observe both satisfied
Determining if \(G(x_t) = 1 \)
Problem of reasoning in PAC-semantics: want to determine \(G(x_t) \) is \(1 - \varepsilon \) valid.
Policies: bounded-rank decision trees (captured fault—tolerant plans, and others...)

3 Today’s Topic:

Success ≠ ability to predict
Instead ability to produce plans to achieve goals in the environment

4 Motivation:

1. Model of development of intelligent being, e.g. a baby
2. Knowledge engineering is difficult — even the toy robot & box example was challenging. We tend to overlook the “obvious”, as when we discussed “common sense”. Need agents we build to share this “common sense” — learning can be effective way to acquire this knowledge (or, some of it...)

5 Pitfalls in learning environment

Many “obvious” formulations of this problem are intractable.

Ex:
“given access to a POMDD encoding a noisy STRIPS domain, find a complete description of how the environment changes in response to actions”
Difficulty #0: STRIPS planning is NP-hard

Difficulty #1: May be hard to detect conditional effects...

Eg:
- "Combination lock domain" — there is a secret combination $s \in \{0,1\}^n$
- Step-by-step the agent enters $\bar{x} \in \{0,1\}^n$
- Lock opens (conditional effect) if $\bar{x} = s$
- Otherwise, nothing happens
- A simple $O(n)$ rule, $O(n)$-attribute, 2-action STRIPS domain
- If goal is “open the lock” — this is hard!
- In fact, without hitting the secret on some trial, we don’t see that it’s possible to hit the lock.

Suppose s chosen uniformly at random, if the agent does not enter $\bar{x} = \bar{s}$, the environment behaves identically. After m trials, if \bar{s} was not one of the m combinations entered, our algorithm choice of what \bar{x} to try next is identical.

So, we can simply compute: for any fixed “trajectory” (sequence of m combinations) what is the probability one of them is \bar{s}?

\[
Pr_{\bar{x}}[\bar{x} = \bar{s}] = \frac{1}{2^n} \text{ for any fixed } \bar{x}
\]

\[
Pr_{\bar{x}}[\bar{x}^{(1)} = \bar{s} \lor \bar{x}^{(2)} = \bar{s} \lor \cdots \lor \bar{x}^{(n)} = \bar{s}] = \frac{m}{2^n}
\]

Even if we go for $m = 2^{n/2}$ rounds, prob we hit combinations is $\frac{1}{2^n}$ — so, with probability $1 - \frac{1}{2^n}$, we may spend 2^n rounds and still not see the lock open.

Fix:

We’ll assume that we’re given a training set of example histories of interaction, we will only promise to do wee w.r.t. whatever portion of environment we were likely to see during training.

Difficulty #2: “Explicit representations” In general, noisy STRIPS poses an agnostic learning problem — we must find rules that approximately capture the environment, that may be violated sometimes. Moreover, the updated rules for attributes may be given by a DNF if multiple rules have that effect, may be hard to learn even without noise!

Fix:

Avoid producing explicit representations of the rules, use implicit learning.
6 Formulation of Learning from Example Histories.

Capturing fix #1:
Assume there was an “exploration policy” π_0 used to collect the training set

Ex:
π_0 might just choose uniform random actions

Ex:
if we collected a training set using arbitrary policies $\pi^{(1)}, \pi^{(2)}, \ldots, \pi^{(m)}$, π_0 might choose one $\pi^{(1)}$ uniformly at random and follow it.

Basically, gives a π_0 that generates the training set we got

Training set $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$, where $x^{(i)} = s_0^{(i)}, p_0^{(i)}, a_1^{(i)}, s_1^{(i)}, p_1^{(i)}, a_2^{(i)}, \ldots, a_T^{(i)}, s_T^{(i)}, p_T^{(i)}$

Def:
We say the sequence of actions $a_1, \ldots, a_t (t \leq T)$ is μ-typical ($\mu \in [0,1]$) for the reference policy π_0 and POMDP if the probability of π_0 takes precisely the sequence of actions a_1, \ldots, a_t in the POMDP is at least μ.

Ex:
For the “random action” policy, we only find that the initial, short sequences are μ-typical for non-negligible μ. (the probability of hitting a_1, \ldots, a_t decays exponentially in t for this policy...)

Note:
Any sequence that we see repeated at least $t \log|A|$ times in our training set must be $\Omega(1/m)$ typical.

(then in expectation $O(1/m)$-typical is observed $<<1$ time in the training set, independent trials,

Chernoff bound gives $\Pr[\text{observe } \geq t \log|A| \text{ times}] < e^{-t \log|A|} = \frac{1}{|A|^t} \cdot \delta$

Union bound over $\leq |A|^t$ sequences \rightarrow doesn’t happen)

Note:
to learn the effect of a sequence of actions, must observe them some $\#$ of times...

Conversely, to observe the μ-typical sequences, only need to take $m = \tilde{O}\left(\frac{1}{\mu^2}\right)$

As on HW9 #1, to make use of training set to estimate the environment’s behavior, we’ll need to also assume that we know the probability / likelihood with which π_0 chose each of its actions in the training set.

What we’ll get into next lecture: how to efficiently construct bounded-rank decision tree policies in, e.g., noisy STRIPS in spite of the fact that planning in the domain is NP-hard.

Catch:
we only promise to find policies that only take typical sequences of actions (with respect to π_0) on every branch.
Reduces the number of possible sequences of actions we can consider to estimate size of training set.

Alt:
there are at most $1/\mu$ μ-typical sequences for any π_0 and POMDP
Since (for fixed t) distinct μ-typical sequences are disjoint events, each comprising at least μ prob. So, $>\mu$ events of $\geq \mu$ probability $\rightarrow >1$ probability total. *

7 Sketch of task

Given:
access to histories of interaction between exploration policy π_0 and a POMDP goal DNF G
Parameters μ (typicality), ε (error tolerance in rules), γ (accuracy), δ (confidence)

If:
there is a rank-k decision tree for time horizon T $(1-\varepsilon + \gamma - \text{testable})$ and a testable (implicit KB) formula ψ s.t. on each branch of the policy
1. The sequence of action is μ-typical
2. There is a (space-bounded, treelike) resolution proof that G is satisfied given ψ and the literals tested on the branch
Then we find such a policy achieving G with probability $1 - \alpha(n,T)(\varepsilon + \gamma)$
(2) is satisfied, e.g., if ψ encodes the STRIPS rules describing the environment.