Today’s Topics

1. Example STRIPS domain
2. Logical encoding of actions & change

2 Example STRIPS domain

2.1 Terminology (last time)

Planning: the problem of producing intelligent behavior. An agent autonomously selects a sequence of actions in pursuit of goals it has been given. A representation of the agent’s environment encodes the effects of the actions on the environment’s state. The goal is a desired property of the environment’s state. Robots from SRI used a propositional representation of environments for a planner, “STRIPS”. The environments that can be represented by this system are STRIPS domains.

Example:

![Figure 1: Robot in room 0, box in room 1](image)

- **Attributes**
 - Robot’s location: \(at_{r,i} \equiv "\text{Robot is in room } i" \)
 - Box: \(at_{b,i} \equiv "\text{Box is in room } i" \)
 - Holding the box: \(holds_{r,b} \)

- **Actions**
 - "move to room \(i \) from \(i' \)”: set the current \(at_{r,i'} \) to 0, set \(at_{r,i} = 1 \)
 - "pick up in room \(i \)”: set \(holds_{r,b} = 1 \)
 - "put down”: set \(holds_{r,b} = 0 \)
• **Preconditions**
 must be in room i': $at_{r, i'} = 1$
 robot must be in the same room as the box: $at_{r, i} = 1, at_{b, i} = 1$
 robot must be holding the box: $holds_{r, b} = 1$

Generally, STRIPS actions are given by a list of literals indicating which attributes are set to
ture/false by the action.
Actions may have **preconditions**, a conjunction (list of literals) that must be satisfied for the agent
to take that action.
Actions may have **conditional effects**, effects that only occur if some given conjunction/list of
literals holds.

• **Conditional Effect**
 If the robot holds the box, the box also moves from i' to i.

• **Precondition Effect**
 If $holds_{r, b} = 1$ is satisfied and the robot takes action "move to room i from i'", then we set $at_{b, i'} = 0, at_{b, i} = 1$.

• **Goal**
 Ex. "Put box in room 2 and leave room 2": $at_{b, 2} \wedge \neg at_{r, 2}$
 STRIPS goals are given by conjunctions of the environment state attributes.

• **Plan**
 STRIPS plans are sequences of actions s.t. the preconditions of each action is satisfied.

• **Planning Problem**
 Planning problem given by:
 1) A STRIPS domain, describing the states, actions, and their effects
 2) A complete description of the initial settings of the state attributes
 3) A goal

• **Solution**
 A plan transforming the initial state attributes into one that satisfies the goal.
 Our example (Figure 1):
 In our robot state we start from the initial conditioned state described above. Suppose the goal
 we want to achieve is $at_{b, 2} \wedge at_{r, 2}$. Then the following is a solution:

 1. Move to Room 1 ($move_{0,1}$)
 2. Pick up the box ($pickup_1$)
 3. Move to Room 0 ($move_{1,0}$)
 4. Move to Room 2 ($move_{0,2}$)
 5. Put down the box ($putdown$)
 6. Move to Room 0 ($move_{2,0}$)

 The following table describe the attributes throughout this plan:
3 Logical encoding of actions & change

Standard approach to planning, represent the problem as a CNF, pass to a SAT-solver satisfying assignment \leftrightarrow encoding of a plan solving the problem.

3.1 Small issue

- We don’t want to use the propositional state variables directly as variables in CNF, because they change. Attributes that change over time are called fluents.
- In general, for each time index $t = 0, 1, ...$, we include a copy of each fluent as a propositional variable.
- Another problem how many copies should we include? We can count the number of distinct possible states if n attributes, there are less than or equal to 2^n states, we don’t need to consider plans of length larger than 2^n, since then we must have repeated states, we can cut this "loop" out of the plan. In general, we can always assume some upper bound on the "time horizon", T. We’ll only generate copies out to the time horizon T —- in general, much, much less than 2^n, encoding has $n \cdot T$ variables —- poly. in the output length, description length of environment.

The following table describes the attributes throughout this plan:

<table>
<thead>
<tr>
<th>Step</th>
<th>$h_{olds_{r,b}}$</th>
<th>$at_{r,0}$</th>
<th>$at_{r,1}$</th>
<th>$at_{r,2}$</th>
<th>$at_{b,0}$</th>
<th>$at_{b,1}$</th>
<th>$at_{b,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: We have n fluents, the overall number of variables is $n \cdot T$.

We’ll assume we have a wait action that leaves the environment unchanged so that we don’t need to guess $T = \text{plan length}$ (can do binary search on T to find shortest plan).

3.2 Pitfalls

How do we encode actions with preconditions?

- effects α_t

 Actions α has effects $e_1, ..., e_k$,

 $\begin{align*}
 \alpha_t &\Rightarrow e_{1,t+1} \\
 \vdots \\
 \alpha_t &\Rightarrow e_{k,t+1}
 \end{align*}$

• Preconditions α_t
 Preconditions $P_1, \ldots, P_r,$
 $\alpha_t \Rightarrow P_{1,t}$
 \vdots
 $\alpha_t \Rightarrow P_{r,t}$

Conditional effect $e'_1, \ldots, e'_k,$
 $[P_{1,t} \land \ldots \land P_{r,t} \land \alpha_t] \Rightarrow e'_1$
 \vdots
 $[P_{1,t} \land \ldots \land P_{r,t} \land \alpha_t] \Rightarrow e'_k$

What is missing?

1. Describe what changes, not what doesn’t change ("frame problem").
2. Does not enforce one action at a time (easy to address).

• "Unique" α_t
 We add,
 $$\bigvee_{\alpha \in \text{Actions}} \alpha_t, \quad t = 0, \ldots, T - 1$$

it must take an action (maybe wait).

Mutual exclusion between actions,
 $$\neg[\alpha_t \land \alpha'_t] \equiv \neg\alpha_t \lor \neg\alpha'_t, \quad \forall \alpha, \alpha', \quad t = 0, \ldots, T - 1$$

taking action $\alpha@t$ prevents $\alpha'.$

For 1, it is easy with negation-as-failure, we can add,
 $$[\ell_t \land \text{not}(-\ell_{t+1})] \Rightarrow \ell_{t+1}$$

• Frame axioms α, ℓ
 $$[-\ell_t \land \ell_{t+1}] \Rightarrow \bigvee_{\alpha: \text{laneffect}} \alpha_t$$

for $t = 0, \ldots, T - 1$, "explanatory frame axiom".

Proposition For any time horizon $T,$ the formula,
 $$\bigwedge_{t=0}^{T-1} ([\text{unique } \alpha_t] \land [\text{preconditions}]_{\alpha_t} \land [\text{effects}]_{\alpha_t} \land [\text{frame axioms}]_{\alpha_t, \ell_t})$$
 $$\land (\ell_{1,0} \land \ldots \land \ell_{n,0})$$

where $(\ell_{1,0} \land \ldots \land \ell_{n,0})$ is conjunction encoding initial state, has for each T-step plan $\alpha_0, \ldots, \alpha_{T-1},$ a unique satisfying assignment in which, for each fluent i and step $t,$ $x_{i,t} = 1$ iff $x_{i,t}$ is satisfied on the t^{th} step of the plan from the initial state.

So, by taking this formula φ and a goal can conjunction $G(x_{1,T}, \ldots, x_{n,T})$ and passing $\varphi \land G$ to a SAT-solver, satisfying assignment \leftrightarrow plan achieving $G.$
Proof sketch By induction on t. There is a unique setting of the fluent and action variables for $\alpha_0, \ldots, \alpha_{t-1}$ from the initial state. Unique α_t formula, exactly one setting of $\alpha_{1,t}, \ldots, \alpha_{m,t}$ making α_t (action for step t) true.

Precondition constraints: we can only set $\alpha_{i,t} = 1$ if preconditions satisfied in this unique setting of $x_{1,t}, \ldots, x_{n,t}$.

Effect and frame axioms: uniquely determine $x_{1,t+1}, \ldots, x_{n,t+1}$ given $\alpha_t, x_{1,t}, \ldots, x_{n,t}$. ■

Note: easy to construct STRIPS domains encoding satisfiability e.g., we have actions that set variables x_1, \ldots, x_n irrevocably, given a literal in a clause is satisfied, we have a conditional action letting us set the clause’s attribute to 1. Goal makes clause variables all 1.