Contents

1 Warm-Up Problem 1

2 Conjunction Learning Algorithm 1

2.1 Last Lecture 1

2.2 Elimination Algorithm 2

2.3 Theorem 2

2.4 Proof 2

3 PAC-Learning 3

4 Other Representations 3

4.1 Disjunctions: ORs of literals 3

4.2 DNF Formulas (Disjunctive Normal Form): OR of ANDs of literals 3

1 Warm-Up Problem

Suppose that there is a 5% chance that I "Give you up" and a 10% chance that I "Let you down." What is the best lower bound on the probability that I don't "Give you up" or "Let you down?"

Answer:

\[G = \text{"Give you up"}, \ L = \text{"Let you down"} \]

Union Bound Approximation:

\[\Pr(\neg(G \lor L)) = 1 - \Pr(G \lor L) \geq 1 - 0.15 = 0.85 \]

2 Conjunction Learning Algorithm

2.1 Last Lecture

Last lecture, we discussed giving an algorithm for finding a conjunction. Given "labeled examples" over some instance space \(X = \{0,1\}^n \), we want to find a conjunction (an AND of "literals" [attributes or negations of attributes]) defining the unknown property. We do this under the hope/belief/assumption that there is some \(c(x) \) (\(c: x \rightarrow \{0,1\} \)) given by a conjunction.

From last lecture, we cannot know \(c \) exactly unless we consider every possible \(x \in X \). Even then, there can/might be multiple representations of the same concept (for example, \(X_1 \land \neg X_1 \) is the same as \(X_n \land \neg X_n \), the same as \(X_1 \land X_2 \land X_3 \land \neg X_1 \land \neg X_2 \land \neg X_3 \)). As a result, we can’t hope to get "the" representation \(c \).

New objective: Assume that our \(x \) have been drawn from a common, unknown distribution \(D \) over \(X \). Our goal is to find a representation \(h \) such that \(\Pr_{x \in D}(h(x) = c(x)) \geq 1 - \epsilon \) for some input error tolerance \(\epsilon \).
2.2 Elimination Algorithm

Data: Examples = \((x^1, b^1), (x^2, b^2), (x^3, b^3), \ldots, (x^m, b^m)\)
Result: Our representation \(h\)

Initialize \(h = x_1 \land x_2 \land \ldots \land x_n \land \neg x_1 \land \neg x_2 \land \ldots \land \neg x_n;\)
for \(i = 1, \ldots, m\) do
 if \(b^{(i)}\) then
 for \(j = 1, \ldots, n\) do
 if \(x_j^{(i)} = 1\) then
 Remove \(\neg x_j\) from \(h\);
 else
 Remove \(x_j\) from \(h\);
 end
 end
end
return \(h\)

Algorithm 1: Elimination Algorithm

2.3 Theorem

Given \(m \geq 2n \left(\ln(2n) + \ln\left(\frac{1}{\delta}\right)\right)\) examples, elimination returns a representation \(h\) such that \(Pr_{x \in D}(h(x) = c(x)) \geq 1 - \epsilon\) with probability \(\geq 1 - \delta\). Moreover, it runs in time \(O(mn)\).

2.4 Proof

First, note that every literal in the unknown \(c\) is included initially. We only delete a literal \(l\) from \(h\) when \(c(x) = 1\) but \(l(x) = 0\).

Claim: \(l\) can’t be in \(c\). Why? If \(c\) included \(l\), \(l(x^{(i)}) = 0\), so then we’d have \(c(x^{(i)}) = 0\), but \(c(x^{(i)}) = 1\) so we have a contradiction. Therefore, the \(h\) we return contains all of the literals of the unknown \(c\). So, if \(c(x) = 0\), some \(l\) in \(c\) is false on \(x\), and therefore the \(h\) we return also satisfies \(h(x) = 0\).

So, the only possible disagreements occur because \(h\) contains literals that \(c\) does not, and then \(h(x) = 0\) but \(c(x) = 1\).

Let’s say that a literal \(\bar{l}\) is “bad” if \(Pr_{x \in D}(\bar{l}(x) = 0 \land c(x) = 1) > \frac{\epsilon}{2n}\)

If \(h\) does not contain any bad literals, \(Pr_{x \in D}(h(x) \neq c(x)) \leq \sum_{l \in h \text{ but not } c} Pr_{x \in D}(l(x) = 0 \land c(x) = 1)\)

\(\sum_{l \in h \text{ but not } c} Pr_{x \in D}(l(x) = 0 \land c(x) = 1) \leq \frac{\epsilon}{2n} + 2n = \epsilon \rightarrow Pr(h(x) = c(x)) \geq 1 - \epsilon\)

So, it suffices to show that with probability \(1 - \delta\), \(h\) does not contain any bad literals.

A bad literal \(\bar{l}\) is going to be deleted if we draw an example \(x^{(i)}\) on which \(c(x^{(i)}) = 1\) and \(\bar{l}(x^{(i)}) = 0\)

Since \(\bar{l}\) is bad, \(Pr(c(x^{(i)}) = 1 \land \bar{l}(x^{(i)}) = 0) > \frac{\epsilon}{2n}\)

Recall that each \(x^{(i)}\) is drawn independently from \(D\). The probability that \(\bar{l}\) survives all \(m\) examples is \((1 - \frac{\epsilon}{2n})^m\).

By another union bound over the bad literals, the probability that any bad literal survives all examples is at most \(\leq \sum_{\text{bad}} \frac{1}{(1 - \frac{\epsilon}{2n})^m} \leq 2n(1 - \frac{\epsilon}{2n})^m\)

\(1 - x \leq e^{-x}\) for all \(x \rightarrow 1 - \frac{\epsilon}{2n} \leq e^{-\frac{\epsilon}{2n}} \rightarrow (1 - \frac{\epsilon}{2n})^m \leq e^{-\frac{m\epsilon}{2n}} \rightarrow 2n(1 - \frac{\epsilon}{2n})^m \leq 2ne^{-\frac{m\epsilon}{2n}}\)

So, for our choice of \(m\) (i.e. solving for \(2ne^{-\frac{m\epsilon}{2n}} = \delta\)), we find that \(Pr(h \text{ contains bad } \bar{l}) < \delta\).

So, with probability \(1 - \delta\), \(h\) does not contain bad literals and thus \(Pr(c(x) = h(x)) \geq 1 - \epsilon\)
3 PAC-Learning

Let \(C_n \) (for int \(n \)) be a class of representations over an \(n \)-attribute instance space \(x_n \). Then \(\bigcup_{n \in N} C_n \) is PAC-learnable if there is an algorithm that given input \(\epsilon \in (0, \frac{1}{2}) \), \(\delta \in (0, \frac{1}{2}) \), and given access to labeled examples of some \(c \in C \) drawn independently from some \(D \) over \(X_n \) runs in polynomial time in \(n, \frac{1}{\epsilon}, \frac{1}{\delta} \), and the size of the representation \(c \), and with probability \(\geq 1 - \delta \) over both the draws of examples from \(D \) and any random choices of the algorithm, returns a representation \(h \) such that \(\Pr_{x \in D}(h(x) = c(x)) \geq 1 - \epsilon \).

We saw that for \(C \) being conjunctions (where any conjunction over \(n \) attributes is represented using \(O(n) \) symbols), conjunctions are PAC-learnable. We saw decision trees last time, and we know that decision trees can express all conjunctions, but not vice versa. Decision trees are not yet known to be PAC-learnable.

4 Other Representations

4.1 Disjunctions: ORs of literals

Can every disjunction be written as a conjunction? We claim no.

Consider: \(x_1 \lor x_2 \). Since this is true when \(x_1 = 1 \) and \(x_2 = 0 \), the conjunction can’t contain \(x_2 \). Similarly, since the rule is true when \(x_1 = 0 \) and \(x_2 = 1 \), the conjunction can’t contain \(x_1 \) either. The conjunction can only contain \(\neg x_1 \) or \(\neg x_2 \), but when \(x_1 = 0 \) and \(x_2 = 0 \), \(x_1 \lor x_2 = 0 \), so the conjunction can’t contain \(\neg x_1 \) or \(\neg x_2 \). Therefore, we are left with the always true empty conjunction. By a similar construction to last lecture, decision trees can also express disjunctions.

![Decision Tree Example]

4.2 DNF Formulas (Disjunctive Normal Form): OR of ANDs of literals

Example: \((x_1 \land \neg x_3 \land x_2 \land x_4) \lor (x_2 \land x_3 \land \neg x_1) \lor (\neg x_3) \lor ... \)

We sometimes call the ANDs ”terms” of the DNF (in the previous example, we have a ”term of size 4, a ”term” of size 3, a ”term” of size 1, ...)

DNFs can express both conjunctions (single term) and disjunctions (terms of size \(n \)).

Is there anything DNFs cannot express? No, since we can simply write out the truth table, write a conjunction for each ”true” line in the table, and OR them together. There is, nevertheless, a sense in which DNFs are more powerful than decision trees. There is a DNF of size \(s \) that requires an exponential size decision tree of size \(2^{\Omega(s)} \), but every decision tree of size \(s \) has a DNF of size \(O(s^2) \).