1. **The sample complexity of confidence.** In lecture we saw that in order to learn a class of VC-dimension d with confidence $1 - \delta$ and error bounded by ϵ, it is sufficient to find a representation h that is consistent with $O\left(\frac{1}{\epsilon} (d \log \frac{1}{\epsilon} + \log \frac{1}{\delta})\right)$ examples. We also saw that $\Omega(d/\epsilon)$ examples were necessary to guarantee an error rate of ϵ with confidence $1 - \delta_0$ for some constant $\delta_0 > 0$. In this problem we will extend this lower bound to include a dependence on δ when we wish to learn to arbitrarily high confidence $1 - \delta$.

 (a) Show that for any class of VC-dimension at least 2, $\Omega\left(\frac{1}{\epsilon^3} \log \frac{1}{\delta}\right)$ examples are necessary for an algorithm to identify a representation that has error at most ϵ with probability at least $1 - \delta$.

 (b) Now, using the lower bound we proved in lecture, conclude that for any algorithm to find a representation with error at most ϵ with probability $1 - \delta$ when the data is labeled by a class of VC-dimension d requires $\Omega\left(\frac{1}{\epsilon^3} (d + \log \frac{1}{\delta})\right)$ examples (as $d \to \infty, \epsilon \to 0, \delta \to 0$).

 Remark. Hanneke recently improved the analysis of the upper bound, to obtain that $O\left(\frac{1}{\epsilon^2} (d + \log \frac{1}{\delta})\right)$ examples suffice to find a representation in a class of VC-dimension d that is correct with probability $1 - \epsilon$ with confidence $1 - \delta$. Thus, the sample complexity of learning a class of VC-dimension d is asymptotically $\Theta\left(\frac{1}{\epsilon^2} (d + \log \frac{1}{\delta})\right)$ examples.

2. **VC-dimension bounds for nonzero error.** We can derive analogous sample complexity bounds in cases where no representation h from the class \mathcal{H} fits the data perfectly, perhaps due to noise in the data. Suppose a class \mathcal{H} of representations of VC-dimension d is given. Show that if we take a sample of

 $$m = O\left(\frac{1}{\epsilon^2} (d \log \frac{1}{\epsilon} + \log \frac{1}{\delta})\right)$$

 examples from a distribution D, then with probability $1 - \delta$ ($\delta < 1/2$) every representation $h \in \mathcal{H}$ has an empirical error $\sum_{j=1}^{m} \frac{1}{m} I[h(x(j)) \neq b(j)]$ within an additive ϵ ($\epsilon < 1/2$) of its true error $Pr_D[h(x) \neq b]$. (Here $I[\varphi]$ denotes the 0/1 valued indicator function that is 1 iff φ is true.)

 (Hint. You can reuse the lemmas stated in lecture! Try to follow the analogous argument except that instead of choosing a set of m out of $2m$ elements uniformly at random, try considering a pair of m-element samples in which you independently swap the ith element in the two samples with probability $1/2$.)
