1. The most expressive representations. Recall that we defined a class C to be (improperly) PAC-learnable by a hypothesis class H if our PAC-learning algorithm runs in time polynomial in n (the number of attributes), the size of the target $c \in C$, $1/\epsilon$, and $1/\delta$, and with probability $1 - \delta$ produces a representation $h \in H$ as output that agrees with the labels given by c with probability $1 - \epsilon$. We restricted our attention to representations that are efficiently evaluatable, i.e., to classes H such that there is a polynomial time algorithm that, given as input a representation h and example x, computes $h(x)$. Show that if a class C is improperly PAC-learnable by any efficiently evaluatable hypothesis class, then it is PAC-learnable by Boolean circuits. (Hint. You may find it useful that, as stated in lecture, circuits can be efficiently generated for any efficient algorithm.)

2. Separating the expressive power of DNFs, CNFs, and Decision Trees. Recall that a DNF is an OR of ANDs of literals (where the ANDs of literals are called “terms”) and a CNF is an AND of ORs of literals (where the ORs of literals are called “clauses”). Consider the following, linear-size DNF formula defining the function $\text{Tribes}_{2,n/2}(x_1, \ldots, x_n)$

$$\text{Tribes}_{2,n/2}(x_1, \ldots, x_n) = (x_1 \land x_2) \lor (x_3 \land x_4) \lor \cdots \lor (x_{n-1} \land x_n)$$

(a) Describe a CNF formula for $\text{Tribes}_{2,n/2}$. (Hint. It is helpful to consider the extremal cases of inputs where as many of the attributes are true as possible but $\text{Tribes}_{2,n/2} = 0$ and where as many of the attributes are false as possible, but $\text{Tribes}_{2,n/2} = 1$.)

(b) Prove that any CNF formula for $\text{Tribes}_{2,n/2}$ requires size $2^{\Omega(n)}$. (Hint. Consider your solution to 2a. What features of your solution were forced, and why?)

(c) Prove that 2b implies that any Decision Tree for $\text{Tribes}_{2,n/2}$ must also have size $2^{\Omega(n)}$.

Reminder: You may work in groups and use outside sources. But, you must write up solutions in your own words and properly reference your sources for each problem. This includes listing your collaborators and properly citing any sources you use. Solutions to each problem must be electronically typeset and submitted online via Blackboard. Instructions appear in the E-Homework Guide: http://www.cse.wustl.edu/~bjuba/cse513t/s18/ehomework/