1 Today’s Topics

1. Finish Logical Encoding of Actions and Change, Planning-As-Satisfiability
2. Markov Decision Processes, PAC Rules and Noisy STRIPS
3. Policies and Fault Tolerance
4. Partial Observability (if time)

2 From last time...

Figure 1: Robot and Box Problem

\(at_{b,2} \wedge \neg at_{r,2} \)
\(at_{b,2} \) is "box in room 2"
\(at_{r,2} \) is "robot in room 2"
Move	A Plan	Corresponding Action Attributes
1 | Move to Room 1 | move\(_{0,1}\)
2 | Pick up the Box | pick\(_{up_1}\)
3 | Move to Room 0 | move\(_{1,0}\)
4 | Move to Room 2 | move\(_{0,2}\)
5 | Put down Box | put\(_{down_2}\)
6 | Move to Room 0 | move\(_{2,0}\)

Table 1: Example Moving Box from Room 1 to 2

<table>
<thead>
<tr>
<th>Room</th>
<th>(at_{r,0})</th>
<th>(at_{r,1})</th>
<th>(at_{r,2})</th>
<th>(at_{b,0})</th>
<th>(at_{b,1})</th>
<th>(at_{b,2})</th>
<th>(holds_{r,b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: The Corresponding Environment

Action encoding - effect preconditions
\[q_{1,t} \land \ldots \land q_{s,t} \land a_{o,t} \Rightarrow e_{t+1} \]
(e.g. \(holds_{r,b,t}\) for the box-moving effect)

Action preconditions \[a_{alpha,t} = p_t \]

Frame axiom for action with preconditions
\[\neg \ell_t \land \neg q_{1,t} \land a_{x,t} \Rightarrow e_{t+1} \]

Axioms for actions: "there is a unique action at each step"
\[\forall a \in A \ a_{a,t}(t = 1, \ldots, T) \land \neg a_{o,t} \lor \neg a_{o',t}(t = 1, \ldots, T) \]

Frame problem specifying what stays the same between steps - simple version
\[\ell_c \land \neg (\ell_{t+1}) = \ell_{t+1} \]

Explanatory Frame Axioms
\[\forall \ell_t \land \ell_{t+1} \land a_{alpha,t} \]

more compact, one clause per literal
\[\neg [\ell_t \land \ell_{t+1}] \land a_{alpha,t} \]

Proposition
For any time horizon \(T\), the formula
\[\land_{t=1} ([\text{unique } \alpha_t] \land [\text{preconditions}]_{\alpha \in A} \land [\text{effects } \alpha_t]_{\alpha \in A} \land [\text{frame axioms}]) \land (\ell_{1,0} \land \ell_{2,0} \ldots \land \ell_{n,0}) \]
such that the initial state is the unique satisfying assignment has a unique satisfying assignment for each \(T\)-step plan \(\alpha_1, \alpha_2, \ldots, \alpha_T\) the assignment to \(x_{1,t}, x_{2,t}, \ldots, x_{n,t}\) is the state of the environment after \(\alpha_1, \ldots, \alpha_t\)

This tells us that we can test for the existence of a plan achieving \(G(\bar{x})\) by adding "\(\land G(\bar{x}_T)\)" satisfying assignment if and only if there is a plan of length \(T\) such that the goal \(G\) is satisfied on \(\bar{x}_T\)

We can read the plan directly from the unique action literal set to 1 in any satisfying assignment

"planning-as-satisfiability" using a SAT-solver to solve planning problems.
Sketch of proof, by induction on \(t \)

1H for \(\alpha_1, \ldots, \alpha_t \) the unique satisfying assignment to \(x_0, \ldots, x_t \) is the state of the environment in \(t = 0, \ldots, t \)

Base: immediate from statement

IS: for plan extended by \(\alpha_{t+1} \)
- we can only set \(a_{\alpha_{t+1}} = 1 \) if \(\alpha_{t+1} \) is legal in the environment state \(x_t \)
- we can’t set any other \(\alpha’ \)’s \(a_{\alpha’t+1} \) to 1
 (we must set same \(a_{\alpha,t+1} \) to 1)

Literals that are not an effect of \(\alpha_{t+1} \) are uniquely fixed in \(x_{t+1} \) by the frame axioms

The effects of \(\alpha_{t+1} \) are uniquely determined in \(x_{t+1} \) by the actions axioms

SAT may be NP-complete, but so is STRIPS planning
- e.g. stupid SAT domain - 1st n actions set an assignment actions with preconditions allow you to mark clauses as satisfied

Goal: mark all clauses

<table>
<thead>
<tr>
<th>Strong assumptions in STRIPS</th>
<th>Generalized Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Effects of actions deterministically determine next state of environment</td>
<td>Markov Decision Process (MDP)</td>
</tr>
<tr>
<td>2 Complete information about environment’s state</td>
<td>Partially Observable Markov Decision Process (POMDP)</td>
</tr>
</tbody>
</table>

3 Markov Decision Process (MDP)

We (only) assume that the environment’s next state is drawn from a fixed probability distribution that depends (only) on the current state and the action we take.

\[
P_{r,d}[x_{t+1}|(\alpha_1, x_t), (\alpha_{t-1}, x_{t-1}), \ldots, (\alpha_1, x_1), x_0] = P_r[x_{t+1}|\alpha_t, x_t]
\]

(Fixing the actions, the resulting process is a Markov chain)

States given by vectors of attributes – "factored MDP"

Example:
States describing the contents and order of a deck of cards, "shuffle" action produces a uniform random permutation of the cards

Example:
We had a rule

\[[\text{pick up}_i, t \land \text{at}_b,i,t] \rightarrow \text{holds}_{r,b,t+1} \]

this rule might (only) hold with probability \((1 - \varepsilon) \) (for all possible states) and with probability

\[\varepsilon, \text{holds}_{r,b,t+1} = 0 \]

Likewise, some frame axioms might be violated with probability \(\leq \varepsilon \), etc.

An MDP that, on each state, is described by \((1 - \varepsilon) \) - valid STRIPS rules is a "noisy STRIPS" domain
4 Policies and Fault Tolerance

We still want to be able to achieve goals in noisy STRIPS, but it no longer suffices to blindly follow a sequence of actions. More generally we want a policy

\[\Pi : \chi \times (A \times \chi)^* \to A \]

\(\chi \) is the current state
\(A \) is the choice of next action

A very natural kind of policy decision tree. We take the convention that the entire T-horizon policy is given by a single (common) tree

Example:

\[\text{move}_{0,1} \rightarrow \text{at}_{b,1} \rightarrow \text{pick}_\text{up}_1 \rightarrow \text{holds}_{r,b} \rightarrow \text{move}_{1,0} \rightarrow \text{move}_{0,2} \]

\[\text{move}_{1,0} \rightarrow \text{pick}_\text{up}_1 \rightarrow \text{holds}_{r,b} \rightarrow \text{move}_{1,0} \rightarrow \text{at}_{b,2} \]

In noisy STRIPS... we call a transition to a state that violates one of the STRIPS rules is a fault. (If faults have probability \(\leq \varepsilon \), independent, then k faults happen at k points \(\omega p < \varepsilon^k \) ← for short plans, get small quickly)

A classical plan is a kind of policy that (in general) handles 0 fails (a "conformant" policy)

Generally a k-fault tolerant policy is one that checks the results of its actions on each step, if one is violated, it executes a \(k - 1 \) fault tolerant recovery policy and otherwise continues a k-fault tolerant policy (tolerates k faults)

Notice
k-fault tolerant policies built over conformant policies (classical plans) are rank-k decision tree policies (rank-k decision tree policies are actually more general)
We could consider more sophisticated kinds of policies but ultimately we want to be able to find them (so we’ll focus on rank-k decision tree policies - extend definition to include trees with internal nodes with only one child, with the convention that rank doesn’t increase for those nodes)
5 Partial Observability

For example: when the robot can only see the room that it is currently in while trying to find the box. We extend the MDP model by including a random process that produces "observations" (depending only on the current state & action).

\[
\begin{array}{cccccc}
\text{Room} & at_{r,0} & at_{r,1} & at_{r,2} & at_{b,0} & at_{b,1} & at_{b,2} & holds_{r,b} \\
0 & 1 & * & * & 0 & * & * & 0 \\
1 & * & 1 & * & * & 1 & * & 0 \\
2 & * & 1 & * & * & 1 & * & 0 \\
3 & 1 & * & * & 1 & * & * & 1 \\
4 & * & * & 1 & * & * & 1 & 1 \\
5 & * & * & 1 & * & * & 1 & 1 \\
6 & 1 & * & * & 0 & * & * & 0 \\
\end{array}
\]

Table 3: The Robot and Box Example with Partial Observability

Main example: masking process applied to environment’s state (recall hides some the attribute’s values)