1 Today’s Topics

1. Classical (STRIPS) Planning
2. Logical Encoding of Action and Change
3. Planning-as-satisfiability

2 Planning Problem:

Graph 1: Robot in room 0, box in room 1.

1. Basics:
 - Planning \leftrightarrow How to produce intelligent behavior. (Application: Robotics)
 - Agent autonomously select a series of actions in pursuit of some goal.
 - To understand the effect of actions and their relationship, we need a model of environment (A representation of it), in which the robot agent operates.
 - STRIPS domains: Particularly simple class of actions, environments used by 'shakey' the robot at SRI in the 1960s.
2. What is a STRIPS domain?

- Environment \leftrightarrow List of attributes.

 Example: Attributes encoding the robot’s location.

 $at_{r,i} \equiv$ robot (r) is in room i.
 $at_{b,i} \equiv$ box (b) is in room i
 $holds_{r,b} \equiv$ robot (r) is holding the box (b).

 In the state graph (Graph 1) above:

 $at_{r,0} = 1, at_{r,1} = 0, at_{r,2} = 0$
 $at_{b,0} = 0, at_{b,1} = 1, at_{b,2} = 0$
 $holds_{r,b} = 0$

3. About actions and changes:

1. Basics concepts:

- Action: "move to room $i"$, "Pick a box", "Put down the box"
- Move: Defined by their effects:

 $move_{0,1}$ has the effect of setting $at_{r,0} = 0$ and $at_{r,1} = 1$.

 Write above as literals that will be satisfied: $(\neg at_{r,0}, at_{r,1})$ for $move_{0,1}$.

- Generally, effects are a set of literals that become satisfied.
- There are "Pre-conditions" that has to be satisfied for actions to be executable. In general, if we have $move_{i,j}$, then it requires $at_{r,i}$ to be 1, if we have $PickUp_{b,i}$, it requires $at_{r,i}$ and $at_{b,i}$ to be 1.

 In general, pre-conditions are also a set of literals that must be satisfied.

 Example: For $PickUp_{b}$, we need $(at_{r,0} \land at_{b,0}) \lor (at_{r,1} \land at_{b,1}) \lor (at_{r,2} \land at_{b,2})$

 Note: Making this condition so definable requires the action to be subscripted with the location, otherwise we’d need a precondition like: *Is the robot in room 0 and box in room 0 or ...*

- Conditional effects:

 If $holds_{r,b}$ and robot moves., then the box should move with it. We encode the moving of the box as a conditional effect of $move_{i,j}$. If $holds_{r,b}$ is satisfied then $move_{i,j}$ sets $at_{b,i}$ to 0 and $at_{b,j}$ to 1.

 In general: conditional effects of an action are given by an effect literal together with a set of pre-condition (for this effect, not the action).

 Note: Even if the conditional effect preconditions are not satisfied, the agent may still execute the action.

- Goal: A STRIPS goal is given by a conjunction. (AND of literals over the state attributes)

 A plan in a STRIPS domain is a sequence of actions. (S.T the pre-condition of each action are satisfied-needs knowledge of state)

 The plan achieves the goal if the goal formula is satisfied on the state of environment after the final action of the plan.
A STRIPS planning problem consists of:
1: A STRIPS domain: complete description of attributes, actions, and effects.
2: An initial state: setting of the state attributes.
3: A STRIPS goal.

Solution: A plan that transforms the initial state to one in which the goal condition is satisfied in the STRIPS domain.

2. Example:
In our robot domain, start from the initial condition state:

- Goal to achieve: \((\text{at}_{b,2} \land \neg \text{at}_{r,2})\)
 - \(\text{at}_{b,2}\): Put the box in room 2. \(\neg \text{at}_{r,2}\): The robot needs to be outside of room 2.

- A solution would be the following:
 1: Move to room 1 \(\leftrightarrow \text{move}_{0,1}\)
 2: Pick up the box \(\leftrightarrow \text{PickUp}_{b,1}\)
 3: Move to room 0 \(\leftrightarrow \text{move}_{1,0}\)
 4: Move to room 2 \(\leftrightarrow \text{move}_{0,2}\)
 5: Put down the box \(\leftrightarrow \text{putDown}_2\)
 6: Move to room 0 \(\leftrightarrow \text{move}_{2,0}\)

<table>
<thead>
<tr>
<th>Step</th>
<th>(\text{at}_{r,0})</th>
<th>(\text{at}_{r,1})</th>
<th>(\text{at}_{r,2})</th>
<th>(\text{at}_{b,0})</th>
<th>(\text{at}_{b,1})</th>
<th>(\text{at}_{b,2})</th>
<th>(\text{hold}_{r,b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: The table for corresponding states of environment

4 Logical encoding of Actions and Change:

- Our objective represent the entire planning problem as a CNF, use SAT-Solver to find plans.
- In particular, we’ll also encode the choice of actions as a propositional attributes so that given a satisfying assignment, we can ”read off” the plan directly.
- Small problems:
 1: The settings the state and action attributes need to change during the execution of the plan. (Attributes that changes value are called ”fluents”)
 2: Fix include a copy of each fluent attribute for each step of the plan, including a copy of \(X_i, X_t\) for \(t = 0, 1, 2,...,T\). \((T\) is the time horizon.)
- We need to fix a time horizon \(T\).
 Without one we do know that:
 \(n\) fluents \(\Rightarrow 2^n\) possible states \(\Rightarrow\) A plan that has more than \(2^n\) steps must have visited a state more than once so we could omit the segment of the plan on this ”loop” in state space, since we only care about the final state.
• Typically, we wouldn’t be interested in such long plans, so we just consider the **bounded** versions of STRIPS planing given a planing problem together with a time horizon T, find a plan of at most T steps.

$$
\begin{array}{|c|c|}
\hline
n \times T \text{ variables} & \text{ fluents} \\
\hline
\hline
\begin{array}{c}
| t = 0 \quad X_{1,0}, X_{2,0} \ldots \ldots X_{n,0} \\
| 1 \quad X_{1,1}, X_{2,1} \ldots \ldots X_{n,1} \\
| \ldots \quad \ldots \\
| T \quad X_{1,T}, X_{2,T} \ldots \ldots X_{n,T}
\end{array} \\
\hline
\end{array}
$$

Table 2: Action attributes for each action α, attribute $\alpha_{\alpha,t} \equiv$ action α taken at step t.

• We need to assume the existence of/add a *wait* action that preserves the state of the environment. A shorter plan can be extended to one that is precisely T steps by adding *wait* actions. (Could optimize length of plan by trying to solve a sequence of instances of bounded horizon planing by using binary search on T.)

• Encoding an action with Pre-conditions. (As multiple clauses) Effect has pre-conditions q_1, \ldots, q_s.

 Literal $e_j, j = 1, \ldots, r$

 \[
 [q_1, t \land \ldots q_s, t \land \alpha_{\alpha,t}] \Rightarrow e_{1,t+1}
 \]

 \[
 [q_1, t \land \ldots q_s, t \land \alpha_{\alpha,t}] \Rightarrow e_{r,t+1}
 \]

 Action’s preconditions:

 \[
 p_1, \ldots, p_k
 \]

 \[
 [\alpha_{\alpha,t}] \Rightarrow p_{1,t}
 \]

 \[
 [\alpha_{\alpha,t}] \Rightarrow p_{k,t}
 \]

• **What we still need...**

 1: Rules describing what doesn’t change as a result of an action in a step.

 2: Rules specifying that a unique action is taken at each set. (This is straightforward, add clauses.

 \[
 (\forall \alpha \in \mathcal{A}, \alpha_{\alpha,t}) \land \bigwedge_{\alpha \neq \alpha' \in \mathcal{A}} \neg (\alpha_{\alpha,t} \land \alpha_{\alpha',t}), t = 0 \ldots T - 1.
 \]

5 **Next Class:**

• The frame problem: Elegant solution using negation-as-failure..

 \[
 \lnot_{\alpha_{\alpha,t}} \Rightarrow l_{t+1}, \text{ but in our encoding as a CNF, we’ll have to reset to something messier.}
 \]