1 Today’s topics
1. Finish No Free Lunch
2. ϵ-nets and Inductive Generalization
3. The “Growth Function”
4. Sauer’s Lemma

2 No Free Lunch Theorem

2.1 WARM–UP PROBLEM
Suppose we have a highly biased coin that only comes up “heads” with probability ϵ. Asymptotically (as a function of k and ϵ), how many times must we toss the coin before it comes up heads k times with constant probability $p \in (0, 1)$?
If n numbers toss...
\[
\sum_{i=k}^{n} \binom{n}{i} (1-\epsilon)^{n-i} \epsilon^i \geq p
\]

2.2 Definitions from last time
The set of dichotomies of a set $S \subseteq X$, realized by the class C, $\Pi_C(S) = \{C \cap S : C \in C\}$ (Using $x \in C \mapsto C(x) = 1$). If every subset $S' \subseteq S$ is in $\Pi_C(S)$, we say S is “shattered” by C.
The VC-dimension of C is the size of the largest set shattered by C.

Note: Chernoff bound
\[
\sum_{i=1}^{n} X_i \ (X_i=1 \leftrightarrow \text{heads})
\]
\[
E[\sum X_i] = \epsilon n
\]
\[
\Pr[\sum X_i \geq (1+\gamma)\epsilon n] \leq e^{-\frac{\gamma^2 \epsilon n}{4}} < e^{-\theta(k)}. \ (\text{if } (1+\gamma)\epsilon n \text{ is } k, \epsilon n \text{ is } \theta(k), \gamma \text{ is a constant})
\]
Consider $\gamma = 2$
\[
\Pr[\sum X_i < (1-\gamma)\epsilon n] \leq e^{-\frac{\gamma^2 \epsilon n}{4}} < e^{-\theta(k)}.
\]

$\epsilon n = k$
$n = \theta(\frac{k}{\epsilon})$

2.3 No Free Lunch Theorem
Any PAC-learning algorithm for a class C of VC-dimension d that produces h. $\Pr_{x \in D}[h(x)=c(x)] \geq 1-\epsilon$ for the target c w.p. $1/7 + \delta$ must use $\Omega(\frac{d}{\epsilon^2})$ examples from D.

Note: Summery of last time
On a set $\{X^{(1)}, \ldots, X^{(d)}\}=S$ shattered by C. If I choose $c \in C$ s.t. a uniform random labeling of S is realized, then if my alg. only sees $\frac{d}{2}$ of the ex’s, then it incorrectly labels $\geq \frac{d}{2}$ with probability $\geq 1/7$ (for some $c \in C$)

To obtain the final bound.
We choose D to force the alg. to take many ex’s just to see a new example. Simultaneously, we need to ensure that the unseen examples can cause error $\geq \epsilon$.

1
Let’s choose \(D \) to give \(X^{(1)} \) prob. \(1 - \delta \).
Let’s give the other \(d - 1 \) examples in \(S \) probability \(\frac{8\epsilon}{d-1} \) each.
If the algorithm misses \(\geq \frac{d-1}{d} \) of these, then as before, if we choose \(c \in C \) to induce a uniform, random labeling on \(S \), then it must be wrong on \(\geq \frac{d-1}{2} \) of these unseen points in expectation. By the same calculation as before, the probability that it is wrong on \(\leq \frac{1}{d} \) of these overall satisfies \(p \geq \frac{d-1}{8} + (1 - p)(d-1) \geq \frac{d-1}{4} \).
So \(p \leq \frac{1}{2} \).
So therefore, again, w.p. \(> 1/7 \), it is wrong on \(\geq \frac{d-1}{4} \), then its error is \(\geq \frac{d-1}{8} \).
We now show that \(\Omega(\frac{d}{2}) \) examples from \(D \) are necessary to obtain \(\geq \frac{d-1}{2} \) out of \(\{X^{(2)}, \ldots, X^{(d)}\} \).

Define \(R_i = \begin{cases} 1 & \text{if } i^{th} \text{ example drawn from } D \text{ is among } \{X^{(2)}, \ldots, X^{(d)}\} \\ 0 & \text{if } i^{th} \text{ example is } X^{(i)} \end{cases} \)

If my alg. uses \(m \) examples, and it is obtaining \(\geq \frac{d-1}{2} \) rare examples w.p. \(\delta > 0(\delta \in (0,1)) \).

We then have that \(m = \Omega(\frac{d}{\delta}) \).

\[
\Pr[R_i = 1] = \sum_{k=2}^d \Pr_D[X^{(k)}] \leq (d-1) \frac{8\epsilon}{d-1} = 8\epsilon \text{ by the earlier calculation.}
\]

3 \(\epsilon \)-nets and Inductive Generalization

“\(\epsilon \)-net”: Intuitively, what we need to know for generalization is that if some \(h \in H \) is wrong about the target concept \(c \) on any set \(r \) that has probability \(\geq \epsilon \) under the unknown \(D \), then we have some example \((x, c(x))\) in our training set that catches this error (Then, as before, solving Consistency solves the learning problem).

Definition For any target concept \(c \), the class of error regions of \(H \) (w.r.t. \(c \)), denote \(\Delta_H(c) \), is \(\Delta_H(c) = \{[h \neq c](x) : h \in H\} \).
The set of error regions of probability \(\geq \epsilon \) under \(D \) is \(\Delta_{H,\epsilon}(c) = \{r \in \Delta_H(c) : \Pr_{x \in D}[x \in r] \geq \epsilon\} \).

Definition For any \(\epsilon > 0 \), we say that a set \(S \subseteq X \) is an \(\epsilon \)-net for \(\Delta_H(c) \) w.r.t. \(D \) if for every \(r \in \Delta_{H,\epsilon}(c) \) we have some \(x \in r \cap S \).

Example: Suppose \(C(X) \equiv 0, H \) is the class of intervals of \(\mathbb{R} \), \(D \) is the uniform distribution on \([0,1]\).

Then \(\Delta_H(c) = \{[h \neq 0](x) : h \in H\} = \mathbb{R}. \) \(\{[h \neq 0](x) = h(x)\} \).

Since for each \([a, b] \in \Delta_H(c), \Pr_{x \in D}[X \in [a, b]] = \min(1, b) - \max(0, a) \).

\(\Delta_{H,\epsilon}(c) = \{[a, b] : \min(1, b) - \max(0, a) \geq \epsilon\} \).

The set \(S = \{\lfloor \epsilon k \rfloor : k = 1, 2, ..., \lfloor \frac{1}{\epsilon} \rfloor\} \) is an \(\epsilon \)-net for \(\Delta_H(c) \).

Since every \(r \in \Delta_{H,\epsilon}(c) \) has length \(\geq \epsilon \) in \([0,1]\), it must hit this grid of \(\epsilon \)-spaced points.

Revisiting the standard calculation:
If we fix any \(r \in \Delta_{H,\epsilon}(c) \), the probability that we fail to hit \(r \) after \(m \) examples is \(\Pr_{x \in D}[x \notin r]^m = (1 - \Pr_{x \in D}[x \notin r])^m \leq (1 - \epsilon)^m \) since \(r \in \Delta_{H,\epsilon}(c) \).

So the probability that \(m \) examples don’t form an \(\epsilon \)-net for \(\Delta_H(c) \) is at most \(|\Delta_H(c)| (1 - \epsilon)^m \) by a union bound.

\(\Delta_H(c) \): Trouble is usually infinitely for numerical data.

Want: analysis in terms of how \(H \) behaves on finite sample.

4 The Growth Function

Definition: The growth function of a representation class \(H \), \(\Pi_H : N \to N \) is given by \(\Pi_H(m) = \max_{s \subseteq x, |s| = m} |\Pi_H(s)| \).

So if \(H \) shatters a set \(S \) of size \(m \), \(\Pi_H(m) = 2^m \).

(Note: there are at most \(2^m \) possible labelings of any set of \(m \) points, so \(\max_{s \subseteq x, |s| = m} |\Pi_H(S)| \leq 2^m \).

Notice: if \(H \) shatters \(S \), \(H \) also shatters all subsets \(S' \subseteq S \).
So...

proposition: If the VC-dimension of \mathcal{H} is d, for every $m \leq d$, $\Pi_{\mathcal{H}}(m) = 2^m$.

5 Sauer’s Lemma

If \mathcal{H} has VC-dimension d, then for every m, $\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} \binom{m}{i} = \mathcal{O}(m^d)$ for $m > d$.

Lemma 1 For any $m, d \in \mathbb{N}$, define $\Phi_d(m)$ inductively, by $\Phi_0(m) = 1$ and otherwise $\Phi_d(m) = \Phi_d(m - 1) + \Phi_{d-1}(m - 1)$. Then, if $\text{VCD}(\mathcal{H}) = d$, for every m, $\Pi_{\mathcal{H}}(m) \leq \Phi_d(m)$.

Lemma 2 $\Phi_d(m) = \sum_{i=0}^{d} \binom{m}{i} = \mathcal{O}(m^d)$ for $m > d$.