Recall:

- **Relation Problems**
 For sets X, Y ("inputs" and "outputs"), and a relation $R \subseteq X \times Y$, the corresponding relation problem is "given $x \in X$, find $y \in Y$ such that $(x, y) \in R$.

- **NP Search Problems**
 A relation problem $R \subseteq X \times Y$ is an NP Search Problem if

 1. R is "polynomially balanced" there is a polynomial $p(n)$ such that for every $(x, y) \in R$, there exists a y' with $|y'| \leq p(|x|)$ and $(x, y') \in R$, where $|y'|$ is its length in bits.
 2. R is "efficiently verifiable" there is a polynomial-time algorithm for computing the Boolean function

 \[
 R(x, y) = \begin{cases}
 0, & (x, y) \notin R \\
 1, & (x, y) \in R
 \end{cases}
 \]

- **NP Completeness**
 We will say that a relation problem R is NP-Complete if:

 1. R is an NP-search problem
 2. for every NP-search problem S, there is an algorithm that uses an algorithm for solving R as a subroutine, and assuming that this subroutine runs in polynomial time, solves S in polynomial time.

- **Proposition regarding boolean circuits and computing functions**
 Suppose there is a polynomial-time algorithm that computes $f = \{f_n : \{0,1\}^n \rightarrow \{0,1\}^{k(n)}\}$. Then there is an algorithm that when given an integer n as input, runs in polynomial time in n and outputs a representation of a Boolean circuit that computes f on inputs of length n, i.e., the circuit c_n that satisfies $c_n(x_1, \ldots, x_n) = f_n(x_1, \ldots, x_n)$ for all $x \in \{0,1\}^n$.

1. CIRCUITSAT and Cook-Levin

Theorem 1 (Cook-Levin) CIRCUITSAT is NP complete.

Proof We saw that CIRCUITSAT is an NP search problem.

* Idea: Use efficient verifiability of arbitrary NP-Search Problem S and the proposition to obtain a circuit S_x computing $S(x, y)$ ("hard wire" input \vec{x}). Once we have $S_x(y) = S(x, y)\forall y$, CIRCUITSAT on circuit S_x returns y such that $(x, y) \in S$.

But we have a couple technical problems . . .
1. Input length. We’re given an x of length n. We can use polynomial balance to guarantee $|y| \leq p(n)$. So, overall, the input S only needs length $\approx n + p(n)$.

2. The circuit must have a fixed number of input wires, for y, but the length of a solution y could vary. We need to know that there is a y of length exactly l, for given arbitrary x.

Idea: we allow “padding” at the end of the solutions so that there always exists a solution y of length exactly $p(n)$ (to satisfy S_x).

For example - use a ”null terminated string” to encode $y (\{0, 1\} \rightarrow \{10, 11\})$, or similarly, use 2 bits to encode each bit of y, and then extend it with all 0’s.

We then solve CIRCUITSAT for S_x and then strip our padding in the solution. ■

2 “Improper” Learning, Representation-dependent Hardness

So far we have defined PAC-learning as follows:

Definition 2 (Proper Learning) For a given representation class C, we assume the data is labeled by some $c \in C$, and we want to find $h \in C$ so that $Pr_{x \in D}[c(x) = h(x)] \geq 1 - \epsilon$. We call this “proper learning.”

Today we will broaden our definition of PAC-learning:

Definition 3 (Improper Learning) In “improper learning,” we may return h in some other class of representations H. (If we regard these to efficiently evalulatable, the we could take H to be Boolean circuits without loss of generality)

We will show that there are classes C for which there is no efficient proper learning algorithm, but there is an efficient improper learning algorithm! (Note that we can still use such algorithms to make predictions) Specifically, we will show this to be true about the class of 3-term-DNFs.

2.1 Solving consistency problems with PAC-learning algorithms

Lemma 4 If there is a (proper) PAC-learning algorithm for a class of representations C, then there is a randomized polynomial-time algorithm for solving

$$\text{Consis}_C^{B(n)} = \left\{ \left(\sum_{i=1}^{n} (x^{(i)}, b^{(i)}), \ldots, (x^{(n)}, b^{(n)}) \right), c \right\} : c \in C, |c| \leq B(n), c(x^{(i)}) = b^{(i)} \forall i \right\}$$

(Note: the last condition can be stated as c is consistent with x)
Proof. If \(C \) has a proper PAC-learning algorithm, let such a (polynomial-time) algorithm be given. Let’s run this algorithm on \(D \), where \(D \) is a uniform distribution on the examples drawn from \(\bar{x} \) (i.e. each \((x^{(i)}, b^{(i)}) \) is chosen uniformly, with probability \(1/m \)). We can sample \(D \) easily.

Notice that a mistake on any of the \(x^{(i)} \)s incurs an error with with probability \(\geq 1/m \). If we take \(\epsilon = 1/2m \), then any \(h \) output by the algorithm cannot afford to label any \(x^{(i)} \) inconsistently.

Note that the algorithm runs in time polynomial in

\[
\frac{|x^{(i)}|}{n}, \quad \frac{1}{\epsilon}, \quad \frac{1}{\delta}, \quad \text{size}(c) \leq B(n), \text{which is poly-n}
\]

and it’s all polynomially bound in \(|x| \). So there exists a consistent \(c \in C \). Our algorithm must run in polynomial-time, and it outputs an \(h \in C \) that is consistent. So, it solves Consis\(_C^{B(n)}\). ■

Now we’ll use this lemma to show that Consis\(_{3\text{-term-DNF}}^{3n}\) is NP complete.

2.2 NP-Completeness of 3-term-DNFs

A 3-term-DNF is an OR of at most 3 ANDs of literals, i.e., some boolean function \(T_1 \lor T_2 \lor T_3 \), where each \(T_i \) is a conjunction. Note, WLOG, that DNFs have a size \(\leq 3n \).

Theorem 5: Unless NP has randomized polynomial-time algorithms, there is no PAC-learning algorithm for 3-term-DNF

Proof

Strategy: Show reduction from a known NP-complete problem (3-color) to Consis\(_{3\text{-term-DNF}}^{3n}\), and then apply our new lemma.

The 3 coloring problem is defined as follows:

\[
\{(G, \chi) \mid G = (V, E) \text{ is an undirected graph, } \chi : V \rightarrow \{R, G, B\}, \chi(u) \neq \chi(v) \forall (u, v) \in E\}
\]

Given \(G \) as input, construct the following set of examples \(n = |V| \) attributes. For each vertex \(i \) create a positive example \(v_i : \)

\[
(1,1,\ldots,1,0_{i^{th}},1,1,\ldots,1)
\]

and for each edge \((i, j) \) create a negative example \(e_{i,j} : \)

\[
(1,1,\ldots,1,0_{i^{th}},1,1,\ldots,1,0_{j^{th}},1,1,\ldots,1)
\]

We need to show
1. if G is 3-colorable, then some 3-term-DNF is consistent with this data set, and
2. using any 3-term-DNF that is consistent, we can “read off” a proper 3-coloring of G.

So, if there is a 3-coloring and a PAC-learning algorithm exists, then by (1) we can find a consistent
3-term-DNF, which by (2) we can use to find a 3-coloring.

1. Let a proper 3-coloring be given for G. Construct a 3-term-DNF where each color gets a term,
and that term contains a literal x_i which is not that color.
We’ll show that this DNF is consistent with our examples.
Consider the positive example v_i. We know that the vertex i has some color $\chi(i)$. Thus the term
Corresponding to $\chi(i)$ will not contain the literal x_i. Furthermore, each term only contains positive
liters and v_i is positive in every attribute other than x_i. So v_i satisfies that term and thus the
whole DNF.
Now consider the negative example $e_{i,j}$. We know that $\chi(i) \neq \chi(j)$. The literal x_i appears in the
term corresponding to $\chi(j)$ and the literal x_j appears in the term corresponding to $\chi(i)$. So, since
x_i and x_j are false in this example, each of these terms is false. the third term (corresponding to
the color other than $\chi(i)$ and $\chi(j)$) contains both x_i and x_j. So it is also false, which means the
DNF is false as well.

2. Assume we have some 3-term-DNF that satisfies out data set. Let’s arbitrarily assign a color to
each of the three terms of h. Since h is consistent with our data set, every vertex example i is
satisfied. Assign vertex i a color corresponding to one of the satisfied terms.
To see the 3-coloring is proper, consider any two vertices (i, j) that got the same color. We know
that the same term is satisfied by both v_i and v_j. Since the attribute x_i appears in i’s example,
and true in j’s example, neither of the literals x_i or $\neg x_i$ could appear in that term.
If there were an edge (i, j) in G, the negative example $e_{i,j}$ and the positive example v_j would differ
only in the value of x_i. Hence the term from before would be satisfied by $e_{i,j}$ as well. Since h
was consistent with our data set, no such example $e_{i,j}$ could be in the data set. So, $(i, j) \notin E$.
Therefore, (contrapositively) for every $(i, j) \in E$, $\chi(i) \neq \chi(j)$ (i.e. the coloring is proper).