1 Today’s Topics

1. Algorithm for integrated learning and planning
2. Analysis of part 1 of the proof ("soundness")

REMINDER: Reports for final projects due 12/8.

2 Recall: Key definition from last time

We say that a sequence of actions \(a_1, \ldots, a_t \) is \(\mu \)-typical (\(\mu \in [0,1] \)) for reference policy \(\Pi_0 \) and POMDP (Partially observed Markov Decision Processes), if the probability that \(\Pi_0 \) takes the precise sequence of actions in the POMDP is \(\geq \mu \).

Recall our task:
We are given an example history of a reference policy \(\Pi_0 \) in a factored \(n \)-attribute POMDP (in which the observations are produced by a masking process.) We are given a goal DNF \(G \) and parameters \(\mu \) (typicality), \(\gamma \) (accuracy), \(\varepsilon \) (error tolerance), and \(\delta \) (confidence), all \(\geq 0 \).
If there exist a rank-k T-horizon decision tree policy and an implicit KB CNF \(\psi \) such that on each branch of the policy:

1. Only \(\mu \)-typical sequence of action appear and
2. There is a space-S(= 2) tree like resolution proof from \(\psi \) that \(G \) is true on the branch (using the literal on the branch as additional premises).

Then we will find with probability \(1 - \delta \) a rank-k T-horizon decision tree policy that achieves \(G \) with probability \(1 - \alpha(n, T)(\varepsilon + \gamma) \) for some polynomial function \(\alpha(\cdot) \) in polynomial time in \(n, T, 1/\mu, 1/\gamma, \log(1/\delta), |A| \) (exponential in \(S \) and \(k \)).

Example: Consider Random walk \(\Pi_0 \), \(\log(1/\mu) \) length actions sequences are typical.

3 Algorithm for integrated learning and planning

3.1 The Basic Structure

Follows the recursive strategy used to find a small-space tree like resolution proof. Search for the smaller rank branch first.
Two main difference:

1. For us, a good branch is one on which \(G \) is achieved.
2. We must search over actions.
3.2 The algorithm: Find-DT

Algorithm 1 Find-DT

function Find-DT($G, KB, k, t, H, \mu, \delta, \gamma$)
 if Π takes more actions than the horizon of H then
 Return FAIL
 else
 Put $H^t \leftarrow histories_{i=t}^{(i)}, a_{(t-1)\ldots i}^{(j(j))} \subseteq H$
 with weight $w^{(j)} = \Pi_{i=1}^{(t-1)} w_i^{(j)}$ for histories
 with weight $w^{(j)} \leq \frac{n}{\mu}$
 if weighted reasoning with example on H^t for the query $\neg \Pi \lor G$ w/ KB returns $\hat{p} \geq 1 - \varepsilon$ then
 Return Π
 if $k > 0$ for each literal l such that neither $l^{(l(t)}$ nor $l^{(l(t)}$ appear on Π then
 Put $\Pi_0 \leftarrow \Pi \Rightarrow l \Rightarrow 1$
 Put $\Pi_1 \leftarrow$ Find-DT($G, KB, k - 1, \Pi_1, H, ...$)
 if $\Pi_1 \neq FAIL$ then
 $\Pi_0 \leftarrow$ Find-DT($G, KB, k, \Pi, H, ...$)
 if $\Pi_0 \neq FAIL$ then
 Return policy $[l \Rightarrow \Pi_1$ if $l = 1, l \Rightarrow \Pi_0$ if $l = 0$
 else
 Return FAIL
 for all action $a \in A$ such that $h^{(j)} \in H, a_{\alpha}^{(j)} = 1 \geq \frac{\mu}{2} m$ do
 Put $\Pi_\alpha \leftarrow \Pi \Rightarrow a \Rightarrow$
 Put $H_\alpha \leftarrow h^{(j)} \subseteq H, a_{\alpha}^{(j)} = 1$
 Put $\Pi_\alpha' \leftarrow$ Find-DT($G, KB, k, t + 1, \Pi_\alpha, H, ...$)
 if $\Pi_\alpha' \neq FAIL$ then
 Return policy $a \Rightarrow \Pi_\alpha'$
 Return FAIL

We initially call Find-DT with the empty branch, $t = 1$, and a sample of $m(n, T, |A|, \mu, \varepsilon, \delta, \gamma)$, histories H from Π_0.

4 Theorem for Find-DT

4.1 Theorem for Find-DT

Theorem: Given $m \geq \frac{8}{\mu^2 \gamma}(2nTln3 + ln(\frac{4T|A|}{\mu}) + ln(\frac{3}{\delta}))$ example of Π_0 the algorithm runs in time $O(m|KB|(4nT)^{2k+2})$ and either returns FAIL or a rank-k T-horizon decision tree policy such that for each branch only $\mu - typical$ actions w.r.t P_{Π_0} are taken and such that for each branch, there is a $(1 - \varepsilon + \gamma)$-testable CNF ψ such that there is a space-2 proof of a G from $\psi \land KB$ and the literals asserted on the branch, then with probability $1 - \delta$ the algorithm returns a policy that achieves G with probability $1 - O((nT)^k(\varepsilon + \gamma))$.

4.2 Part 1 "Soundness" Proof

("When the algorithm returns a policy, it is a good one!")

Proof(Part 1):
Observe that there are at most \(\frac{1}{n} \mu - \text{typical} \) sequence of any fixed length.

Therefore there are at most \(\frac{T}{n} \mu - \text{typical} \) sequences.

There are at most \(|A|T\frac{2}{n}\) sequences of actions are either \(\frac{\mu}{4} - \text{typical} \) or a minimal prefix of a sequence that is not \(\frac{\mu}{4} - \text{typical} \).

Note that: Since \(m \) is at least \(\frac{8}{\delta^2} (2nT\ln 3 + \ln(4T|A|) + \ln(\frac{3}{2})) \), Hoeffding inequality guarantees that the fraction of times that a sequence of actions appears in the sample is within an additive \(\frac{\mu}{4} \) of its probability of being taken with probability 1 - \(\frac{\delta}{3|A|3^{2nT}} \).

So by a union bound over the sequences, \(\geq \frac{3}{4}\mu - \text{typical} \) sequences appear at least \(\frac{\mu}{2} \) times and no \(< \frac{\mu}{4} - \text{typical} \) sequences appear \(\frac{\mu}{2} \) times.

And by union bound over \(3^{2nT} \) subsets of literals that may appear on a branch. By HW4P3, we find that our queries all estimates the probability that the branch covers the examples and \(G \) is falsified to within an additive \(\gamma \) with probability 1 - \(\frac{\delta}{3} \).

Claim 1: Find-DT only returns rank-k decision tree (or FAIL).

Proof of Claim 1: Proof by induction.

For \(k = 0 \), by induction on numbers of steps remaining.

It can only return an action followed by another rank-0 decision tree policy, which is another rank-0 policy.

By induction on \(k \), and the number of literals remaining, we find that the algorithm either returns a policy that branches on a literal and (by \(|H|\)) then chooses either a rank \(k - 1 \) or a rank \(k \) policy and hence has rank \(k \) itself or returns a policy that takes an action and (by \(|H|\)) follows a rank \(k \) policy, which is also a rank \(k \) policy.

(Recall that rank-k decision trees on \(n \) attributes have at most \(n^k + 1 \) leaves. From HW2.)

Thus overall we have \(O((nT)^k) \) leaves. So the probability that the policy would FAIL is \(\leq O((nT)^k(\varepsilon + \gamma)) \).

4.3 Part 2 ”Completeness” Proof ideas

It doesn’t hurt to include an additional test for a literal – each of the branches of the original (unknown) target decision tree policy will still pass the reasoning with examples query since the probability of \(\neg \Pi \land \neg G \) only measures as we add literals to \(\Pi \). This is why we can make a single rank-k recursive call when some rank-k \(-1 \) call succeeds.

For actions, the fact that the recursive calls partition the histories allow us to bound the run time.

The actual proof to be continued...