Warm Up

1. \(\binom{k}{i} + \binom{k}{i-1} = ? \)
 - \(\binom{k}{i} \): don’t choose the element
 - \(\binom{k}{i-1} \): do choose the element

 We can recover the choice based on whether or not "k+1" in set. So the term count disjunctions.

 Thus: \(\binom{k}{i} + \binom{k}{i-1} = \binom{k+1}{i} \)

2. \(\sum_{i=0}^{k} \binom{k}{i} = ? \)
 - Solution 1:
 choose subsets of all, size = 2^k
 \(\binom{k}{0} + \binom{k}{1} + \ldots + \binom{k}{k-1} + \binom{k}{k} = 2^k \)
 - Solution 2:
 We know: \((1 + x)^k = \sum_{i=0}^{k} \binom{k}{i} x^i \)
 Here x=1 and we get:
 \(\sum_{i=0}^{k} \binom{k}{i} = 2^k \)

\(\epsilon \)-nets and Inductive Generalization

Objective: Show an strengthening of Occam’s razor using VC-dimension of \(H \)

For any target concept \(c \), the class of error regions of \(H \) with respect to \(c \) is:
\[\Delta_H(c) = \{ [h \neq c](x) : h \in H \} \]

The set of error regions of probability \(\epsilon \) under a fixed distribution \(D \) is:
\[\Delta_{H,\epsilon} = \{ r \in \Delta_H(c) : Pr(x \in D)[x \in r] \geq \epsilon \} \]

For any \(\epsilon > 0 \) we say that \(S \subseteq X \) is an \(\epsilon \)-net for:
\[\Delta_{H,\epsilon} - r \] if for every \(r \in \Delta_{H,\epsilon} \) there is some \(x \in r \cap S \).

Example: Target concept \(C(n) = \Phi(0) \)

\(H \): intervals
\(D \): uniform distribution on \([0, 1]\]
\(\Delta_{H,\epsilon} = \text{intervals of size } > \epsilon \)
\(S = [k\epsilon, k=1, \ldots, \frac{1}{\epsilon}] \)
\(S \subseteq [0, 1] \)
\(\Gamma \subseteq \Delta_{H,\epsilon} \)
\(|S| = m \rightarrow Pr(S \text{ doesn’t hit gamma}) \leq (1 - \epsilon)^m \)

Definition of Sauer’s Lemma

For a set of points \(S = \{x^1, \ldots, x^m\} \), the set of dichotomies realized by a class \(H \) on \(S \), \(\prod_H(S) \), is the set of all distinct labeling \(H \) can give \(S \)

The VC-dimension of \(H \) is the size of the largest set \(S \), shattered by \(H \).

The growth function of a representation class \(H \), \(\prod_H : N \rightarrow N \) is given by:
\[\prod_H(m) : \text{max}(S \subseteq X : |S| = m) | \prod_H(S) | \]

Sauer’s Lemma: If VCD(\(H \)) = d, then for every \(m \),
\[\prod_H(m) \leq \sum_{i=0}^{d} \binom{m}{i} = O(m^d) \]
Proof of Sauer’s Lemmas

Lemma 1
For any \(m, d \in \mathbb{N} \), define \(\Phi_d(m) \) inductively by: \(\Phi_0(m) = \Phi_d(0) = 1 \), otherwise \(\Phi_d(m) = \Phi_{d-1}(m-1) = \Phi_d(m-1) \). If \(\text{VCD}(H) = d \), then: \(\Pi_H(m) \leq \Phi_d(m) \).

Proof: By definition on \(m, d \)

Base: \(d = 0 \) or \(m = 0 \). If \(d = 0 \), \(H \) must only contain constant function \(\Pi_H(0) = 1 \, \leq \Phi_d(0) \); if \(m = 0 \), the only subset is \(\emptyset \) so \(\Pi_H(\emptyset) = 1 \leq \Phi_d(0) \).

Induction hypothesis: for any \(m', d' \), such that \(m' \geq m \), or \(d' \geq d \), \(\Pi_H(m') = 1 \, \leq \Phi_{d'}(m') \).

Induction step: Let any set \(S \) of size \(m \) be given, \(H \) of VC-dimension \(d \). Choose any \(x \in S \), since \(|S - \{x\}| \) has size \(m-1 \), by induction hypothesis \(|\Pi_H(S - \{x\})| \leq \Phi_d(m-1) \). \(\Pi_H(S - \{x\}) \) is the set of all labelings of \(S - \{x\} \) contains all labelings of \(S \), projected down to \(S - \{x\} \).

So

\[
\Pi_H(S) \leq |\Pi_H(S - \{x\})| + |\Pi_B(S - \{x\})|
\]

Where \(B = \{ r \in \Pi_H(S) : x \in r, r - \{x\} \in \Pi_H(S) \} \)

Consider \(\Pi_B(S - \{x\}) \), \(\text{VCD}(B) \leq d-1 \).

Suppose \(S' \subseteq S - \{x\} \) is shattered by \(B \). Then \(S' \cup \{x\} \) is shattered by \(H \), since both \(r \in S', r \cup \{x\} \in \Pi_H(S) \).

In other words, \(x \) can take two labels.

So \(\text{VCD}(B) \leq \text{VCD}(H) - 1 \).

Since for every arbitrary \(S \), \(2|\Pi_B(S - \{x\})| \leq |\Pi_H(S)| \)

So \(d' = d - 1 \)

So \(|\Pi_B(S - \{x\})| \leq \Phi_{d-1}(m-1) \) by definition hypothesis, and hence

\[
\Pi_H(S) \leq \Phi_d(m-1) + \Phi_d - 1(m - 1) = \Phi_d(m) \quad \text{by definition}
\]

Example:

\[
\begin{array}{|c|c|c|}
\hline
x_1 & x_2 & x_3 \\
\hline
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\hline
\end{array}
\]

\[\Pi_H(S)\]

\[
\begin{array}{|c|c|}
\hline
x_1 & x_2 \\
\hline
0 & 1 \\
1 & 1 \\
1 & 0 \\
\hline
\end{array}
\]

\[\Pi_H(S - \{x\}) \leq \Phi_d(m-1)\]

\[
\begin{array}{|c|c|}
\hline
x_1 & x_2 \\
\hline
0 & 1 \\
1 & 1 \\
1 & 0 \\
\hline
\end{array}
\]

\[B' = \{ b \in \Pi_H(S) : x \notin b, b \cup x \in \Pi_H(S) \} \]

\[B' = \Pi_{B'}(S - \{x\})\]
\[|\Pi_H(S)| = |\Pi_H(S - x)| + |\Pi_H'(S - x)| \leq \Phi_d(m - 1) + \Phi_{d-1}(m - 1) = \Phi_d(m) \]

Lemma 2

\[\Phi_d(m) = \sum_{i=0}^{d} \binom{m}{i} \leq \left(\frac{me}{d} \right)^d = O(m^d) \quad \text{for} \quad (m > d) \]

Proof: By induction on \(m, d \)

Base: \(m = 0 \). \(\sum_{i=0}^{d} \binom{0}{i} = l = \Phi_d(0) \), since \(d=0 \sum_{i=0}^{0} \binom{m}{i} = 1 = \Phi_0(m) \)

Induction hypothesis: As in claim

Induction step:

\[\Phi_d(m) = \Phi_d(m - 1) + \Phi_{d-1}(m - 1) \]
\[= \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i} \]
\[= \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i-1} \]
\[= \sum_{i=0}^{d} \left(\binom{m-1}{i} + \binom{m-1}{i-1} \right) \]
\[= \sum_{i=0}^{d} \binom{m}{i} \]

Complete inductor

For the second part, for \(m > d, \frac{d}{m} < 1 \)

\[\frac{d}{m} \sum_{i=0}^{d} \binom{m}{i} \leq \sum_{i=0}^{d} \frac{d}{m} \binom{m}{i} \]
\[\leq \sum_{i=0}^{m} \frac{d}{m} \binom{m}{i} \]
\[= (1 + \frac{d}{m})^m \]
\[\leq e^d \]

For \(d > 0 \)

\[\sum_{i=0}^{d} \binom{m}{i} \leq \left(\frac{me}{d} \right)^d \]