CSE 559A: Computer Vision

Fall 2017: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu)

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Sep 21, 2017
Recitation tomorrow (9/22) 10am in J309.
 - Will go over topics relevant to Pset.

Office hours from 5:30-6:30 in J517.

Look at course resources for Python and Math

Refresh Trigonometric and Complex number identities
 - \((x_1 + jy_1)(x_2 + jy_2) = (x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1)\)
 - \(\cos(-\theta) = \cos \theta, \sin(-\theta) = -\sin \theta, \cos(\pi - \theta) = -\cos \theta, \ldots\)
Surface Normals

2-D

\[\hat{n} \text{ Unit Vector Facing "outwards"} \]

\[90^\circ \]

Equation for a Line

\[x \cos \theta + y \sin \theta = c \]

\[\langle [x, y], [\cos \theta, \sin \theta] \rangle = c \]

\[\langle [x, y], \hat{n} \rangle = c \]

Curve

\[\hat{n}(x, y) \]

Defined at a point, Normal to the tangent at that point

\[\hat{n} = [\hat{n}_x, \hat{n}_y] \]

\[y = f(x) \quad x = g(y) \]

\[\frac{\partial y}{\partial x} = -\frac{\hat{n}_x}{\hat{n}_y} \quad \frac{\partial x}{\partial y} = -\frac{\hat{n}_y}{\hat{n}_x} \]
Surface Normals

2-D

\(\hat{n} \) Unit Vector
Facing "outwards"

90°

Line

Curve

\(\hat{n}(x, y) \)

Tangent

Defined at a point,
Normal to the tangent at that point

Equation for a Line

\[\langle [x, y], \hat{n} \rangle = c \]

\(\hat{n} = [\hat{n}_x, \hat{n}_y] \)

\(y = f(x) \quad x = g(y) \)

\(\frac{\partial y}{\partial x} = -\frac{\hat{n}_x}{\hat{n}_y} \quad \frac{\partial x}{\partial y} = -\frac{\hat{n}_y}{\hat{n}_x} \)
Surface Normals

3-D

\(\hat{n} \) Unit Vector
Facing "outwards"

90°

Plane

Surface

\(\hat{n}(x, y, z) \)

Tangent Plane

Defined at a point,
Normal to the tangent plane at that point

Equation for a Plane

\[\langle [x, y, z], \hat{n} \rangle = c \]

\(\hat{n} = [\hat{n}_x, \hat{n}_y, \hat{n}_z] \)

\(z = f(x, y) \)

\(\nabla z = \begin{bmatrix} \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \end{bmatrix} = \begin{bmatrix} \hat{n}_x & \hat{n}_y \\ \hat{n}_z & \hat{n}_z \end{bmatrix} \)
Surface Normals

3-D

\[\mathbf{n} \]

\[90^\circ \]

\[\hat{n} \]

\[\mathbf{n} \]

Plane

Surface

\[\hat{n}(x, y, z) \]

Tangent Plane

 Doesn't change if I scale entire surface

Defined at a point, Normal to the tangent plane at that point

Equation for a Plane

\[\langle [x, y, z], \hat{n} \rangle = c \]

\[\hat{n} = [\hat{n}_x, \hat{n}_y, \hat{n}_z] \]

\[z = f(x, y) \]

\[\nabla z = \left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \right] = \left[\hat{n}_x, \hat{n}_y \right] \]
NORMALS

Normal Field
\[\hat{n}(x, y, z) \quad \hat{n}(x, y) \]
Defined only on surface points
If only one \(z = f(x, y) \)

Gradient Field
\[\nabla Z(x, y) = \left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \right](x, y) \]

Gradient / Normal fields are integrable, i.e., integrating along a closed curve gives 0.
Angle subtended by a curve on a point, is length of curve projected on unit circle
Angles subtended by a curve on a point, is length of curve projected on unit circle.

Angle between two lines is the angle subtended by any curve joining the two lines.

Measured in Radians.
Solid Angle

Area subtended by a surface on unit sphere.

Measured in steradians
Differential angle

Take an infinitesimal part of a curve, that can be assumed to be a line segment, and find the angle it subtends.
Differential angle

\[d\theta = \frac{dL \cos \alpha}{r} \]

\(\alpha \) is the angle between the curve normal and line to the point.

Same length subtends greatest angle if aligned with normal.

Otherwise, "foreshortened"
Differential solid angle

\[d\omega = \frac{dA \cos \alpha}{r^2} \]
Differential solid angle

\[d\omega = \sin\theta \, d\theta \, d\phi \]

\[\phi \in [0, 2\pi] \]

\[\theta \in [0, \pi/2] \text{ or } [0, \pi] \]
Radiance \(L(\theta, \phi) \) is defined in terms of power \(P \) that the infinitesimal patch \(dA \) is pushing out in the infinitesimal solid angle \(d\omega \):

\[
L(\theta, \phi) = \frac{P}{(dA \cos \alpha)d\omega}
\]
Irradiance

How much light is arriving at a surface?
Irradiance

\[\int L(\theta, \phi) \cos \theta d\omega = \int \int L(\theta, \phi) \cos \theta \sin \theta d\theta d\phi \]

How much light is arriving at a surface?
Irradiance

\[\int L(\theta, \phi) \cos \theta d\omega = \int \int L(\theta, \phi) \cos \theta \sin \theta d\theta d\phi \]

What happens next? If this is a sensor, that's what it measures.
Bi-directional Reflectance Distribution Function

(Non illuminant) Surfaces will Absorb and Reflect portions of the incident light, in different directions.
Bi-directional Reflectance Distribution Function

(Non illuminant) Surfaces will Absorb and Reflect portions of the incident light, in different directions.

\[
\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{L_o(\theta_o, \phi_o)}{L_i(\theta_i, \phi_i) \cos \theta_i d\omega_i}
\]
Bi-directional Reflectance Distribution Function

Total radiance in output direction from integrating contributions from all incoming radiance:

\[L_o(\theta_o, \phi_o) = \int \rho(\theta_i, \phi_i, \theta_o, \phi_o)L_i(\theta_i, \phi_i) \cos \theta_i \, d\omega_i \]

- So, the BRDF describes how every incoming ray gets reflected by the surface.
 - How much energy in which direction
 - This is actually a function of wavelength \(\lambda \)
Bi-directional Reflectance Distribution Function

Properties

- Positivity: \(\rho(\theta_i, \phi_i, \theta_o, \phi_o) \geq 0 \)

- Helmholtz Reciprocity: \(\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \rho(\theta_o, \phi_o, \theta_i, \phi_i) \)

- Total Energy leaving surface is less than total energy arriving

\[
\int L_i(\theta_i, \phi_i) d\omega_i \geq \int \left[\int \rho(\theta_i, \phi_i, \theta_o, \phi_o) L_i(\theta_i, \phi_i) \cos \theta_i \ d\omega_i \right] \cos \theta_o d\omega_o
\]
RADIANCE

BRDF

Essentially a material property.

Outward Radiance in all directions same,
but still a function of input direction to normal.

Lambertian BRDF $\rho(\cdot) = K$

Mirror

Most of the radiance is in the mirror direction

Specular Highlights
BRDF

Essentially a material property.

Lambertian BRDF \[\rho(\cdot) = K \]

The appearance won't change from change in viewing direction

Most of the radiance is in the mirror direction

Specular Highlights
Source: Matusik et al., A Data Driven Reflectance Model, TOG 2003
In all cases, reflected radiance depends on surface geometry, which we can exploit to estimate shape.