CSE 559A: Computer Vision

Fall 2017: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu)

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Sep 14, 2017
• Homework posted (and updated!). Make sure you have pset1V2.zip.

• Recitation will be NEXT Friday (9/22).

• Regular office hours tomorrow (in J420).
CRASH COURSE ON OPTIMIZATION

- Let x be a scalar.

- $f(x; \theta)$ is some function of x, and some other parameters θ.

- $\min_x f(x; \theta)$ is the smallest value that f can take ...
 - For some fixed values of θ
 - By searching over all possible values of x
 - Is a function of θ
 - But not of x

\[
\begin{align*}
 f(x; a, b, c) &= a(x - b)^2 + c \\
 \min_x f(x; a, b, c) &= a + c
\end{align*}
\]
arg min_x f(x; θ) is the value of x for which f attains its minimum value.

Same deal for max and arg max. max f = −(min(−f)).

How do we find x?

If \(\frac{df(x;\theta)}{dx} = 0 \) at \(x = x' \), then \(x' \) is an extremum.
- i.e., *local* minimum or local maximum.
- Can find which by checking second derivative.

Minimum: \(\frac{\partial^2 f(x; \theta)}{\partial x^2} > 0 \); Maximum: \(\frac{\partial^2 f(x; \theta)}{\partial x^2} < 0 \)
CRASH COURSE ON OPTIMIZATION

- $f(x; a, b, c) = ax^2 + bx + c$
- Only one minima or maxima at $-b/2a$
- Can see it also by rewriting as $a\left(x - \frac{-b}{2a}\right)^2 + c - \frac{b^2}{4a}$
- Minimum if $a > 0$, Maximum if $a < 0$
Minimization over multiple variables

\[
\arg \min_{x_1, x_2, x_3} f(x_1, x_2, x_3; \theta)
\]

\[
\arg \min_x f(x; \theta), \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
\]

Note that output of \(f \), which you are minimizing, is still scalar valued (a single number).
CRASH COURSE ON OPTIMIZATION

- Generalization of derivative: gradient

\[\nabla_x f(x; \theta) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{bmatrix} \]

- Also a vector of the same dimensions as \(x \)

\[\frac{\partial f}{\partial (\alpha x_1 + \beta x_2 + \gamma x_3)} = \left\langle \nabla_x f, [\alpha, \beta, \gamma]^T \right\rangle \]

- Derived by chain rule
- Tells us about gradient in any direction.
- \(y = Ax \quad \Rightarrow \quad (\nabla_y f) = A (\nabla_x f) \)
- If we say \((\nabla_x f) = 0 \) at \(x \), that means every element of the gradient vector is 0.
- And so, the derivative along all "directions" is 0. Then \(x \) is an extremum of \(f \).
• Identities
 - $\nabla_x x^T Q x = (Q + Q^T)x = 2Qx$ (if Q is symmetric)
 - $\nabla_x x^T v = \nabla_x v^T x = v$

• Minimum, maximum, saddle point: things become quickly complicated in high dimensions.

• Formally, you show Hessian is positive definite: $\nabla_x (\nabla_x f)^T$
CRASH COURSE ON OPTIMIZATION

• $f(x; \theta)$ is a strictly convex function of x, if:

\[
\frac{f(x_1; \theta) + f(x_2; \theta)}{2} < f\left(\frac{x_1 + x_2}{2}; \theta\right), \quad \forall x_1, x_2
\]

• Then f has only one local extremum. It is a local minimum, and this is the global minimum.
- Back to our setting:

\[f(x; Q, b, c) = x^T Q x - 2b^T x + c \]

- \(Q \) is a symmetric positive-definite matrix.
- Multi-variable Quadratic form.
- This is convex. Single extremum which is a minimum.
- Consider eigen-decomposition of \(Q = V\Lambda V^T \).
 - Columns of \(V \) are eigen-vectors. \(V \) is unitary.
 - \(\Lambda \) is diagonal, with eigen-values. All eigenvalues positive.
- \(Q = V\Lambda V^T, \quad x^T Q x = (Vx)^T \Lambda (Vx) = \sum_i \lambda_i (Vx)_i^2 \)
- Sum of quadratic terms with all coefficients \((\lambda_i)\) positive
CRASH COURSE ON OPTIMIZATION

• Back to our setting:

\[f(x; Q, b, c) = x^T Q x - 2b^T x + c \]

Positive "semi" definite (Eigenvalues are non-negative)
Back to our setting:

\[f(x; Q, b, c) = x^T Q x - 2b^T x + c \]

Assume \(Q \) is positive definite:

\[\nabla_x f = 0 \rightarrow 2Qx - 2b = 0 \rightarrow Qx = b \]

\[x = Q^{-1}b \]
General note on computing $Q^{-1}b$

- Never compute Q^{-1}, and then multiply by b.
 - Numerically unstable, more expensive.
- Call `scipy.linalg.solve`:
 - Cholesky / LDL Decomposition: $Q = LDL^T$
 - Always exists for a positive definite matrix. L is lower triangular.
 - Solve $Qx = b \rightarrow LDL^Tx = b \rightarrow Ly = b, L^Tx = D^{-1}y$

\[
\begin{bmatrix}
a & 0 & 0 & 0 & \ldots \\
q & c & 0 & 0 & \ldots \\
d & e & f & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ldots \\
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
\end{bmatrix}
\]
DENOISING

\[X = \arg \min_X \frac{1}{2\sigma^2} \|Y - X\|^2 + R(X) \]

\[X = \arg \min_X X^T QX - 2b^T X + c \]

- \(R(X) = \lambda \sum_n (x[n] - 0.5)^2 = \lambda \|X - 0.5\|^2 \)
- \(Q = \frac{1}{2\sigma^2} I + \lambda I \)
- \(Q \) is therefore diagonal.
- \(Q^{-1} \) involves inverting elements along diagonal.
- Simple to compute \(Q^{-1} b \).
 - Independent operation on each pixel / element of \(b \).
DENOISING

\[X = \arg \min_X \frac{1}{2\sigma^2} \| Y - X \|^2 + R(X) \]

\[X = \arg \min_X X^T QX - 2b^T X + c \]

- \(R(X) = \lambda \sum_n \left[\| (G_x * x)[n] \|^2 + \| (G_x * x)[n] \|^2 \right] \)
- \(R(X) = \lambda (\| A_{gx}X \|^2 + \| A_{gy}X \|^2) \)
- Using \(\| Y \|^2 = Y^T Y, (AB)^T = B^T A^T: \)
 - \(Q = \frac{1}{2\sigma^2} I + \lambda (A_{gx}^T A_{gx} + A_{gy}^T A_{gy}) \)
 - \(b = \frac{1}{2\sigma^2} Y \)
- \(Q \) is HUGE and not diagonal.
- Can't even form \(Q \), let alone call \texttt{scipy.linalg.solve}
- You could form 'sparse matrix', but we'll get to that later.
DENOISING

- Need to find $X = Q^{-1}b$ where
 - $Q = \frac{1}{2\sigma^2} I + \lambda(A_{gx}^T A_{gx} + A_{gy}^T A_{gy})$
 - $b = \frac{1}{2\sigma^2} Y$
- Can we diagonalize Q?
- YES! Use the Fourier Transform / Fourier basis S
 - $A_{gx} = SD_{gx}S^*$
 - $A_{gx}^T A_{gx} = S|D_{gx}|^2 S^*$
 - $A_{gy}^T A_{gy} = S|D_{gy}|^2 S^*$
 - $I = SS^* = SIS^*$

$|D_g|^2$ denotes $D_g^* D_g$.
DENOISING

• Need to find \(X = Q^{-1}b \) where

 - \(Q = \frac{1}{2\sigma^2} I + \lambda(A_{gx}^T A_{gx} + A_{gy}^T A_{gy}) \)

 - \(b = \frac{1}{2\sigma^2} Y \)

\[
Q = S \left[\frac{1}{2\sigma^2} I + \lambda(|D_{gx}|^2 + |D_{gy}|^2) \right] S^* \\
\text{Diagonal}
\]

\[
QX = b \rightarrow S^*X = \left[\frac{1}{2\sigma^2} I + \lambda(|D_{gx}|^2 + |D_{gy}|^2) \right]^{-1} S^* b
\]

\[
F_X[u,v] = \left[\frac{1}{2\sigma^2} + \lambda(|F_{gx}[u,v]|^2 + |F_{gy}[u,v]|^2) \right]^{-1} \frac{F_Y[u,v]}{2\sigma^2}
\]

\[
F_X[u,v] = \frac{F_Y[u,v]}{1 + 2\sigma^2 \lambda(|F_{gx}[u,v]|^2 + |F_{gy}[u,v]|^2)}
\]

• Caveat: Assumes circular convolution
DE-BLURRING

\[
X = \arg \min_X \frac{1}{2\sigma^2} \|Y - A_k X\|^2 + \lambda \left(\|A_{gx} X\|^2 + \|A_{gy} X\|^2 \right)
\]

\[
X = \arg \min_X X^T Q X - 2b^T X + c
\]

- \(b = \frac{1}{2\sigma^2} A_k^T Y \)
- \(Q = \frac{1}{2\sigma^2} A_k^T A_k + \lambda (A_{gx}^T A_{gx} + A_{gy}^T A_{gy}) \)
- Still diagonalizable by the Fourier Basis

\[
Q = S \left[\frac{1}{2\sigma^2} |D_k|^2 + \lambda (|D_{gx}|^2 + |D_{gy}|^2) \right] S^* \\
\text{Diagonal}
\]

\[
Q X = b \rightarrow S^* X = \left[\frac{1}{2\sigma^2} |D_k|^2 + \lambda (|D_{gx}|^2 + |D_{gy}|^2) \right]^{-1} S^* b
\]

- \(S^* A_k^T Y = S^* (SD_K S^*)^* Y = D_K^* S^* Y \)
DE-BLURRING

\[
X = \arg \min_X \frac{1}{2\sigma^2} \|Y - A_k X\|^2 + \lambda \left(\|A_{gx} X\|^2 + \|A_{gy} X\|^2 \right)
\]

\[
X = \arg \min_X X^T Q X - 2b^T X + c
\]

\[
F_X[u, v] = \frac{\tilde{F}_k[u, v] F_Y[u, v]}{|F_k[u, v]|^2 + 2\sigma^2 \lambda(|F_{gx}[u, v]|^2 + |F_{gy}[u, v]|^2)}
\]

- When \(\lambda = 0 \), \(F_X = F_Y/F_k \).
- But this is unstable since \(F_k[u, v] \) can be 0 for some \([u, v] \).
- We can see that the regularization term in the denominator dominates for \(u, v \) where \(|F_k[u, v]|^2 \) is low.
- This is called Wiener filtering.
- Again remember, assumes circular convolution.
\[X = \arg \min_X \sum_n w[n] \| Y[n] - (X \ast k)[n] \|^2 + R(x) \]

\[X = \arg \min_X \| D_{\sqrt{w}}(Y - A_k X) \|^2 + R(x) \]

\[X = \arg \min_X X^T (A_k^T D_w A_k) X - 2A_k^T D_w Y + R(x) \]

\[X = \arg \min_X X^T QX - 2b^T X + c \]

- Now, \(Q \) is no longer diagonalized by the Fourier Basis.
- No other choice but Cholesky?
- \(Q \) is hard to form, but we can compute \(Q \nu \) for any \(\nu \) very easily.
 \[Q \nu = A_k^T D_w A_k + \lambda \left(A_{gx}^T A_{gx} + A_{gy}^T A_{gy} \right) \]
 - This takes an "image" shaped vector and returns an image shaped vector.
 - Multiplication by \(A_k, A_{gx}, A_{gy} \) is convolution by corresponding kernels.
 - Multiply by \(D_w \) is a point-wise operation.
 - Multiply by \(A_k^T \) is convolution with flipped kernel.
CONJUGATE GRADIENT

- Generic algorithm for solving $Qx = b$ for symmetric positive definite Q.
- Useful when you can multiply by Q but not 'form' it.

Basic Idea

- For a given set of vectors $\{p_1, p_2, \ldots, p_N\}$
 - that are same size as x
 - linearly independent
 - $N = \text{dimensionality of } x$
- We can write any $x = \sum_i \alpha_i p_i$
- If we also choose the vectors to be 'conjugate' such that $p_i^T Q p_j = 0$ for $i \neq j$:

$$Qx = b \rightarrow p_k^T Qx = p_k^T b \rightarrow \alpha_i p_k^T Q p_k = p_k^T b \rightarrow \alpha_i = \frac{p_k^T b}{p_k^T Q p_k}$$
CONJUGATE GRADIENT

Iterative Algorithm

- Begin with some guess x_0 for x (say all zeros)
- $k = 0$, $r_0 \leftarrow b - Qx_0$, $p_0 \leftarrow r_0$
- Repeat
 - $\alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T Q p_k}$
 - $x_{k+1} = x_k + \alpha_k p_k$
 - $r_{k+1} = r_k - \alpha_k Q p_k$
 - $\beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$
 - $p_{k+1} = r_{k+1} + \beta_k p_k$
 - $k = k + 1$

DE-BLURRING

What if we did not have a squared regularizer on gradients?

\[X = \arg \min_X \sum_n \|Y[n] - (X \ast k)[n]\|^2 + \lambda \sum_n (\|G_x \ast X[n]\| + \|G_y \ast X[n]\|) \]

No longer a quadratic form. (\| \cdot \| \text{ implies absolute value})

Variable splitting (Divide and Concur) Approach

\[X = \arg \min_X \min_{\{c_x[n], c_y[n]\}} \sum_n \|Y[n] - (X \ast k)[n]\|^2 + \lambda \sum_n (\|c_x[n]\| + \|c_y[n]\|) \]

\[+ \beta \left[\sum_n ((G_x \ast X[n] - c_x[n])^2 + (G_y \ast X[n] - c_y[n])^2) \right] \]

Equivalent when \(\beta \to \infty \)
DE-BLURRING

\[X = \arg \min_X \min_{\{c_x[n], c_y[n]\}} \sum_n \|Y[n] - (X * k)[n]\|^2 + \lambda \sum_n (\|c_x[n]\| + \|c_y[n]\|) \]

\[+ \beta \left[\sum_n ((G_x * X)[n] - c_x[n])^2 + ((G_y * X)[n] - c_y[n])^2 \right] \]

Iterative Approach

- Begin with some estimate of \(X \), and a small value of \(\beta \)
- Alternate between
 - Minimizing wrt \(c_x, c_y \) keeping \(X \) constant. Pointwise.
 - Minimizing wrt \(X \) keeping \(c_x, c_y \) constant. Quadratic / Fourier diagonalized.
 - While increasing the value of \(\beta \)

Further Reading: Krishnan and Fergus. Fast Image Deconvolution using Hyper-Laplacian Priors, NIPS 2009. Also see the ADMM algorithm.
COLOR

Remember, at each pixel:

\[
X_r[n] = \int L(\lambda, n) \Pi_r(\lambda) d\lambda \\
X_g[n] = \int L(\lambda, n) \Pi_g(\lambda) d\lambda \\
X_b[n] = \int L(\lambda, n) \Pi_b(\lambda) d\lambda
\]

- \(L(\lambda, n) \) is the light incident at \(n \)
 - We've folded in spatial sensitivity, quantum efficiency, ignored noise.
- Here \(\Pi_r, \Pi_g, \Pi_b \) are the wavelength-dependent transmissions of the camera's color filters.
 - Often called color matching functions.
- Assume these are RAW images (no post-processing).
Remember, at each pixel:

\[
X_r[n] = \int_{\lambda} L(\lambda, n) \Pi_r(\lambda) d\lambda \\
X_g[n] = \int_{\lambda} L(\lambda, n) \Pi_g(\lambda) d\lambda \\
X_b[n] = \int_{\lambda} L(\lambda, n) \Pi_b(\lambda) d\lambda
\]

Observations

- This is "projection" of a continuous valued function to three numbers.
 - Loss of information.
 - Metamerism: \(L(\lambda)\) that have the same RGB values.
COLOR

Remember, at each pixel:

\[
X_r[n] = \int_{\lambda} L(\lambda, n) \Pi_r(\lambda) d\lambda
\]
\[
X_g[n] = \int_{\lambda} L(\lambda, n) \Pi_g(\lambda) d\lambda
\]
\[
X_b[n] = \int_{\lambda} L(\lambda, n) \Pi_b(\lambda) d\lambda
\]

Observations

- **Rationale:** Models the human visual system.
 - We only have three kind of photoreceptors
 - The standard R,G,B filters "span" the same subspace as human observers.
 - Determined using psycho-physical experiments
 - By the International Commission on Illumination (CIE) in 1931
 - Introduced the concept of primary colors
 - Defined the CIE standard observer

We can't distinguish between metamers either.
COLOR

Remember, at each pixel:

\[
X_r[n] = \int_\lambda L(\lambda, n) \Pi_r(\lambda) d\lambda \\
X_g[n] = \int_\lambda L(\lambda, n) \Pi_g(\lambda) d\lambda \\
X_b[n] = \int_\lambda L(\lambda, n) \Pi_b(\lambda) d\lambda
\]

Observations

- \(L(\lambda)\) is the spectrum of the light that reaches the camera.
 - This is a function of both the object surface, and the illumination
 - Lights can be of different colors
 - But human perception of color is very stable under changing illumination
 - "Color Constancy"
- Also means metamerism is illumination dependent
 Two objects could have identical RGB values under one light but not another.