CSE 559A: Computer Vision

Fall 2017: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu)

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Sep 7, 2017
<table>
<thead>
<tr>
<th>Name</th>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarett Gross</td>
<td>Mon</td>
<td>5:40pm-6:30pm</td>
<td>Jolley 431</td>
</tr>
<tr>
<td>Ayan Chakrabarti</td>
<td>Wed</td>
<td>9:30am-10:30am</td>
<td>Jolley 205</td>
</tr>
</tbody>
</table>
| Abby Stylianou* | Fri | 10:00am-11:00am | 9/[8,15]: Jolley 420
| | | | 9/22- : Jolley 309 |
Denoising by Smoothing (with a Gaussian filter):

\[X \]

\[Y = X \ast G \]

\[
G'[n_1, n_2] = G[n_1 - n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} \right)
\]

\[
\sum_{n_2} G'[n_1, n_2] = 1
\]

\[
Y[n] = \sum_{n'} G[n']X[n - n']
\]

\[
Y[n_1] = \sum_{n_2} G'[n_1, n_2]X[n_2]
\]
Denoising by Smoothing (with a Gaussian filter):

\[X \]

\[Y = X \ast G \]

\[G'[n_1, n_2] = G[n_1 - n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} \right) \]

\[\sum_{n_2} G'[n_1, n_2] = 1 \]
Denoising by Smoothing (with a Gaussian filter):

\[X \]

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_I^2} \right) \]

\[\sum_{n_2} B[n_1, n_2] = 1 \]

Make the filter weights data dependent!
BILATERAL FILTERING

Denoising by Smoothing (with a Gaussian filter):

\[X \]

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_f^2} \right) \]

\[\sum_{n_2} B[n_1, n_2] = 1 \]
BILATERAL FILTERING

Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp\left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_I^2} \right) \]

\(\sigma_I \) High
Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp\left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_I^2} \right) \]

\(\sigma_I \text{ Medium} \)

Gaussian Filter Result
Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_I^2} \right) \]
Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_I^2} \right) \]

\(\sigma_I \) Low Repeated

Gaussian Filter Result
BILATERAL FILTERING

- *Guided Bilateral Filter:* $B[n_1, n_2]$ based on a separate image $Z[n]$: depth, infra-red, etc.
- Far less efficient than convolution
 - Filter also has to be computed, normalized, at each output location.
 - Efficient Datastructures Possible
- Further Reading:
 - Paris et al., SIGGRAPH/CVPR Course on Bilateral Filtering
 - Recent work on using this for inference, best paper runner up at ECCV 2016
The Discrete 2D Fourier Transform

\[F[X] = F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right)) \]

\[\exp(j \theta) = \cos \theta + j \sin \theta \]

We follow EE convention and use \(j = \sqrt{-1} \) instead of \(i \).

- Defined for a single-channel / grayscale image \(X \).
- \(F \) is a "complex valued" array indexed by integers \(u, v \).
- Therefore, we typically store \(F[u, v] \) for \(u \in \{0, \ldots, W - 1\}, v \in \{0, \ldots, H - 1\} \).
- Can think of \(F[u, v] \) as a complex-valued "image" with the same number of pixels as \(X \).

Can be implemented fairly efficiently using the FFT algorithm (often, FFT is used to refer to the operation itself).
The Discrete 2D Fourier Transform Pair

\[
F[X] = F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right)
\]

\[
F^{-1}[F] = X[n_x, n_y] = \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right)
\]

- If \(X\) is real-valued, \(F[-u, -v] = F[W - u, H - v] = \bar{F}[u, v]\), where \(\bar{F}\) implies complex conjugate.
- \(F[0, 0]\) is often called the DC component. It is the average intensity of \(X\). It is real if \(X\) is real.
- Only \(WH\) independent "numbers" in \(F[u, v]\) (counting real and imaginary separately) if \(X\) is real.
- Parseval's Theorem: (energy preserving upto constant factor)

\[
\sum_{u,v} ||F[u, v]||^2 = \sum_{u,v} F[u, v] \bar{F}[u, v] = \frac{1}{WH} \sum_{n_x,n_y} ||X[n_x, n_y]||^2
\]
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

$$F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle$$

(Remember for \(u, v \in \mathbb{C}^n, \langle u, v \rangle = u^*v\)).

where each \(S_{uv}\) can be thought of as a different (complex-valued) image:

$$S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right)$$

\(F[u, v]\) is the inner-product between \(X\) and \(S_{uv}\). (scaled by \(\sqrt{WH}\))
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \left\langle S_{uv}, X \right\rangle \]

(Remember for \(u, v \in \mathbb{C}^n, \left\langle u, v \right\rangle = u^* v \).)

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))

Property: \(\left\langle S_{uv}, S_{u'v'} \right\rangle = 1 \) if \(u' = u \) & \(v' = v \), and 0 otherwise.

Inverse-DFT:

\[X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv} \]
DFT as a Co-ordinate Transform

\[
F[u, v] = \frac{1}{\sqrt{WH}} \left\langle S_{uv}, X \right\rangle, \quad X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv}
\]

\[
\langle S_{uv}, S_{u'v'} \rangle = 1 \text{ if } u' = u \& v' = v, \text{ and } 0 \text{ otherwise.}
\]
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[
F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle, \quad X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv}
\]

\[\langle S_{uv}, S_{u'v'} \rangle = 1 \text{ if } u' = u \text{ & } v' = v, \text{ and } 0 \text{ otherwise.}\]
DFT as a Co-ordinate Transform

\[F = \frac{1}{\sqrt{WH}} S^* X, \quad X = \sqrt{WH} S F \]

\(S \) is a \(WH \times WH \) matrix with each column a different \(S_{\mu \nu} \).

So, \(SS^* = S^* S = I \Rightarrow S^{-1} = S^* \).

- This means \(S \) is a unitary matrix.
- Multiplication by \(S \) is a co-ordinate transform:
 - \(X \) are the co-ordinates of a point in a \(WH \) dimensional space.
 - Multiplication by \(S^* \) changes the 'co-ordinate system'.
 - In the new co-ordinate system, each 'dimension' now corresponds to frequency rather than location.
 - \(S \) is a length-preserving matrix \((\|S^* X\|^2 = \|X\|^2)\).
 - It does rotations or reflections (in \(WH \) dimensional space).
FOURIER TRANSFORM

X

$|F|^2$

(W-u) 0 u

Zero-centered Co-ordinates for frequencies [u,v]
FOURIER TRANSFORM

\[X \]

\[|F|^2 \]

\[\angle F \]
FOURIER TRANSFORM

X

$|F|^2$

$∠F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

X

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

X

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

X

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

Location of edges / structure, defined by phase more than magnitude.
Convolution in "matrix" form

\[Y[n_x, n_y] = \sum_{n'_x} \sum_{n'_y} k[n'_x, n'_y] \cdot X[n_x - n'_x, n_y - n'_y] \]

Spatial Locations Stacked to form Vector

- Mostly 0 (sparse)
- Has \(w_k H_k \) non-zero entries per row.
- Same set of values, but at different places in each row

Spatial Locations Stacked to form Vector

CONVOLUTION THEOREM
CONVOLUTION THEOREM

\[Y = X \ast k \Rightarrow Y = A_k X \]

\(A_k \) is not square for valid / long convolution.

Question:

Let \(Y = A_k X \) correspond to \(Y = X \ast_{\text{valid}} k \). Now, let \(X' = A_k^T Y \). How is \(X' \) related to \(Y \) by convolution? What operation does \(A_k^T \) represent?

A: Full convolution with \(k[-n_x, -n_y] \) (flipped version of \(k \))
CONVOLUTION THEOREM

\[Y = X \ast k \Rightarrow Y = A_k X \]

Now if we consider the square \(A_k \) matrix corresponding to 'same' convolution with circular padding, i.e. padding as \(X[W + n_x, n_y] = X[n_x, n_y], X[n_x, -n_y] = X[n_x, H - n_y], \) etc.

Then, \(A_k \) is diagonalized by the Fourier Transform!

\[A_k = S D_k S^* \]

- Here, \(D_k \) is a diagonal matrix.
- The above equation holds for every \(A_k \)
 - You get different diagonal matrices \(D_k \).
 - But \(S \) is the diagonalizing basis for all kernels.
- In the Fourier co-ordinate system, convolution is a 'point-wise' operation!

\[Y = A_k X = S D_k S^* X \Rightarrow (S^* Y) = D_k (S^* X) \]
CONVOLUTION THEOREM

Why does this happen?

- \(X = \sqrt{WH} \sum_{u,v} F[u,v] S_{uv} \)
- \(Y = X * k = \sqrt{WH} \sum_{u,v} F[u,v] S_{uv} * k \) (by linearity / distributivity)
- \((S_{uv} * k)[n] = \sum_{n'} k[n'] S_{uv}[n - n'] \)
- \(S_{uv}[n - n'], \) assuming circular padding, is also a sinusoid with the same frequency \((u, v)\) and magnitude, but different phase.
- Multiplying by \(k[n'] \) changes the magnitude, but frequency still the same.
- Adding different sinusoids of the same frequency gives you another sinusoid of the same frequency. \(\alpha \cos \theta + \beta \sin \theta. \)
- \((S_{uv} * k)[n_x, n_y] = d_{uv;k} S_{uv}[n_x, n_y], \) where \(d_{uv;k} \) is some complex scalar.

Sinusoids are eigen-functions of convolution

\[
Y = X * k = \sqrt{WH} \sum_{u,v} F[u,v] S_{uv} * k = \sqrt{WH} \sum_{u,v} \left(F[u,v] d_{uv;k} \right) S_{uv}
\]
CONVOLUTION THEOREM

\[A_k = S D_k S^* \]

- What's more, the diagonal elements of \(D_k \) are the \((W_x \times W_y)\) Fourier transform of \(k \).

\[D_k = \text{diag} \left(\frac{1}{\sqrt{WH}} S^* k \right) \]

- This is the convolution theorem.
 - Computational advantage for performing (and inverting!) convolution, albeit under circular padding.
 - Good way of analyzing what a kernel is doing by looking at its Fourier transform.
- Why did we use complex numbers? Like quaternions in Graphics, for convenience!
 - If we used real number co-ordinate transform, convolution would convert to several \(2 \times 2 \) transforms on pairs of co-ordinates.
 - Complex numbers are just a way of grouping these pairs into a single 'number'.

Doing Convolutions in the Fourier Domain:
- DFT, Point-wise multiply with FT of kernel, Inverse DFT
- Need to keep in mind some padding / size issues.
Kernel has to be the same size as the image.
Kernel has to be the same size as the image.
- From same circular, you can always get 'valid' by cropping.
- To get full / same with zero-padding, pad your original image first.

1. Zero-pad
2. Circularly shift to center at (0,0)
CONVOLUTION THEOREM

Kernel / Fourier Transform (magnitude) Pairs

Gaussian Kernels: Low Pass (attenuate higher frequencies)
Larger spatial support: smaller Fourier support.

Gaussian Derivatives: Band-pass

For more indepth coverage: Szeliski Sec 3.4