CSE 559A: Computer Vision

Fall 2017: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu)

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Sep 5, 2017
OFFICE HOURS

Jarett Gross Mon 5:40pm-6:30pm @ TBD
Ayan Chakrabarti Wed 9:30am-10:30am @ Jolley 205
Abby Stylianou* Fri 10:00am-11:00am @ TBD

Mon/Fri locations will be decided in a day or two.

* Some of the Friday slots will be allocated as recitation sections (one for each problem set). Dates will be posted in advance.
CONVENTION

RECAP

- An image X is an array* of intensities.
- $X[n]$ or $X[n_x, n_y]$ refers to intensities for a particular pixel at location n or $[n_x, n_y]$.
 - Single index denotes $n = [n_x, n_y]^T$ is a vector of two integers.
- Each $X[n]$ is a scalar for a grayscale image, or a 3-vector for an RGB color image.
 (Unless otherwise specified, vector implies column vector)

\[
Y[n] = \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{bmatrix} X[n]
\]

*Clarification: numpy convention is $H \times W \times C$: (vertical, horizontal, channels) or $H \times W$.

Do not think of single-channel images themselves as matrices!
It makes no sense to "matrix multiply" a 80x60 pixel image with a 60x20 pixel image.
But sometimes, we want to interpret operations as linear on all intensities / intensity vectors in an image. Stack all pixel locations, in some pre-determined order, as rows. Represent X as:

- $(HW) \times 3$ matrix: color images
- $(HW) \times 1$ vector: grayscale images.

$Y[n] = C X[n] \Rightarrow Y = X C^T$

```python
# Begin with X as (H,W,3) array
Xflt = np.reshape(X, (-1, 3))  # Flatten X to a (H*W, 3) matrix
Yflt = np.matmul(Xflt, C.T)  # Post-multiply by C
Y = np.reshape(Yflt, X.shape)  # Turn Y back to an image array
```
CONVOLUTION

Notation: \(Y = X \ast k \)

\[
Y[n] = \sum_{n'} k[n'] \ X[n - n']
\]

\[
Y[n_x, n_y] = \sum_{n_x'} \sum_{n_y'} k[n_x', n_y'] \ X[(n_x - n_x'), (n_y - n_y')]
\]

- Double summation over the support / size of the kernel \(k \)

- We assume \(k[n] \in \mathbb{R} \) is scalar valued.
 - If \(X[n] \) is scalar, so is \(Y[n] \).
 - If \(X \) is a color image, each channel convolved with \(k \) independently.

To go from \(m \) to \(n \) channels in a "conv layer": \(k[n] \in \mathbb{R}^{n \times m} \) is matrix valued, and \(k[n'] \ X[n - n'] \) is a matrix-vector product.
CONVOLUTION

\[Y[n] = \sum_{n'} k[n'] \cdot X[n - n'] \]

This assumes a 0 centered kernel
We pass 2D arrays to the convolve functions, and get a 2D array out. Let's assume top left index is (0,0) for all.

Let W_x, W_k and W_y denote the widths of X, k, and Y; and H_x, H_k and H_y the heights.

The 2D convolution function in most libraries provide 3 options: Valid, Full, and Same.

$$Y[n] = \sum_{n'} k[n'] \ X[n - n']$$
CONVOLUTION

\[
W_y = W_x - W_k + 1 \\
H_y = H_x - H_k + 1
\]

Valid: Subset of values of \(Y[n] \) for which EVERY \(X[n - n'] \) is defined.

\[
Y[n] = \sum_{n'} k[n'] \cdot X[n - n']
\]
CONVOLUTION

\[
Y[n] = \sum_{n'} k[n'] \cdot X[n - n']
\]

Full: Subet of values of \(Y[n] \) for which ANY \(X[n - n'] \) is defined.

\[
W_y = W_x + W_k - 1
\]
\[
H_y = H_x + H_k - 1
\]
CONVOLUTION

Padding

What do we use for the missing values of $X[n]$?

- Zero (Often Default)
- Some other constant
- Reflect / Symmetric (across boundary)
- Circular (wrap around)
- Replicate
...
CONVOLUTION

Same does what we "expect", but you should understand the padding and cropping involved. When kernel size isn't odd, which crop is taken often depends on the library.
CONVOLUTION: PROPERTIES

Let $X \ast_{\text{full}} k$, $X \ast_{\text{val}} k$, and $X \ast_{\text{same}} k$ denote full, valid, and same convolution (with zero padding for full and same)

- **Linear / Distributive**: For scalars α, β;
 - If $Y = X \ast k$, then: $X \ast (\alpha k) = (\alpha X) \ast k = \alpha Y$
 - If $Y_1 = X \ast k_1$ and $Y_2 = X \ast k_2$, $(k_1, k_2 \text{ same size})$: $X \ast (\alpha k_1 + \beta k_2) = \alpha Y_1 + \beta Y_2$
 - If $Y_1 = X_1 \ast k$ and $Y_2 = X_2 \ast k$, $(X_1, X_2 \text{ same size})$: $(\alpha X_1 + \beta X_2) \ast k = \alpha Y_1 + \beta Y_2$

- **Associative**
 - $(X \ast_{\text{full}} k_1) \ast_{\text{full}} k_2 = X \ast_{\text{full}} (k_1 \ast_{\text{full}} k_2)$
 - $(X \ast_{\text{val}} k_1) \ast_{\text{val}} k_2 = X \ast_{\text{val}} (k_1 \ast_{\text{full}} k_2)$
 - $(X \ast_{\text{same}} k_1) \ast_{\text{same}} k_2 \neq X \ast_{\text{same}} (k_1 \ast_{\text{full}} k_2)$

- **Commutative**: $k_1 \ast_{\text{full}} k_2 = k_2 \ast_{\text{full}} k_1$
 - $(X \ast_{\text{full}} k_1) \ast_{\text{full}} k_2 = (X \ast_{\text{full}} k_2) \ast_{\text{full}} k_1$
 - $(X \ast_{\text{val}} k_1) \ast_{\text{val}} k_2 = (X \ast_{\text{val}} k_2) \ast_{\text{val}} k_1$
 - $(X \ast_{\text{same}} k_1) \ast_{\text{same}} k_2 \neq (X \ast_{\text{same}} k_2) \ast_{\text{same}} k_1$
CONVOLUTION

\[X[n] \]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[k[n] \]

\[Y[n] \]

(Same with zero padding)
CONVOLUTION

\[X[n] \]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[Y[n] \]

Kernel = Impulse Response

(Same with zero padding)

\[k[n] \]
CONVOLUTION

\[X[n] \]

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[Y[n] \]

(Same with zero padding)

\[k[n] \]
CONVOLUTION

$X[n]$

$Y[n]$

$k[n] = \frac{1}{25}$

(Same with zero padding)
CONVOLUTION

\[X[n] \quad Y[n] \]

Gaussian Kernels

\[G_\sigma[n_x, n_y] \propto \exp \left(-\frac{n_x^2 + n_y^2}{2\sigma^2} \right) \]

\[\sum_{n_x, n_y} G_\sigma[n_x, n_y] = 1 \quad n_x, n_y = [-S, -(S-1), \ldots, -1, 0, 1, \ldots, (S-1), S] \]

\[\sigma = 1 \]
CONVOLUTION

\[X[n] \]

\[Y[n] \]

Gaussian Kernels

\[G_\sigma[n_x, n_y] \propto \exp\left(-\frac{n_x^2 + n_y^2}{2\sigma^2}\right) \]

\[\sum_{n_x, n_y} G_\sigma[n_x, n_y] = 1 \]

\[n_x, n_y = [-S, -(S - 1), \ldots, -1, 0, 1, \ldots, (S - 1), S] \]

\[\sigma = 2 \]
CONVOLUTION

\[X[n] \quad Y[n] \]

Gaussian Kernels

\[G_\sigma[n_x, n_y] \propto \exp \left(-\frac{n_x^2 + n_y^2}{2\sigma^2} \right) \]

\[\sum_{n_x, n_y} G_\sigma[n_x, n_y] = 1 \quad n_x, n_y = [-S, -(S - 1), \ldots, -1, 0, 1, \ldots, (S - 1), S] \]

\[\sigma = 3 \]
CONVOLUTION

\[X[n] \quad Y[n] \]

\[\sigma = 4 \]

Gaussian Kernels

\[G_\sigma[n_x, n_y] \propto \exp \left(-\frac{n_x^2 + n_y^2}{2\sigma^2} \right) \]

\[\sum_{n_x, n_y} G_\sigma[n_x, n_y] = 1 \quad n_x, n_y = [-S, -(S - 1), \ldots, -1, 0, 1, \ldots, (S - 1), S] \]
CONVOLUTION

\[X[n] \quad Y[n] \]

Gaussian Kernels

\[G_\sigma[n_x, n_y] \propto \exp \left(-\frac{n_x^2 + n_y^2}{2\sigma^2} \right) \]

\[\sum_{n_x, n_y} G_\sigma[n_x, n_y] = 1 \quad n_x, n_y = [-S, -(S - 1), \ldots, -1, 0, 1, \ldots, (S - 1), S] \]
CONVOLUTION

\[X[n] \quad \text{and} \quad Y[n] \]

Unsharp Masking

\[Y = (1 + \alpha)X - \alpha(X \ast G_\sigma) = X \ast ((1 + \alpha)\delta - \alpha G_\sigma) \]

\[\sigma = 4 \quad \alpha = 1 \]
CONVOLUTION

$X[n] \quad Y[n]$

Unsharp Masking

$$Y = (1 + \alpha)X - \alpha(X \ast G_\sigma) = X \ast ((1 + \alpha)\delta - \alpha G_\sigma)$$

$\sigma = 2 \quad \alpha = 1$
Unsharp Masking

\[Y = (1 + \alpha)X - \alpha (X * G_{\sigma}) = X * ((1 + \alpha)\delta - \alpha G_{\sigma}) \]
CONVOLUTION

\[X[n] \quad Y[n] \]

Unsharp Masking

\[Y = (1 + \alpha)X - \alpha(X * G_\sigma) = X * ((1 + \alpha)\delta - \alpha G_\sigma) \]
APPLICATION: EDGE DETECTION

What is an edge?

Different answers from different people!

Depth boundary / Material Boundary / Object Boundary?

Edge (not boundary): Location where image intensity is changing rapidly in some direction.

Directional Derivative
APPLICATION: EDGE DETECTION

Finite Difference Approximation

\[\frac{\partial}{\partial n_x} X[n_x, n_y] \propto X[n_x + 1, n_y] - X[n_x - 1, n_y] \]

\[X \ast [1 \ 0 \ -1] \]

Derivative is a linear spatially invariant operation: Convolution

\[X \ast \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \]

Smoothed in y direction
"Sobel" Operator

\[X \ast \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]

Y Derivative
APPLICATION: EDGE DETECTION

Derivatives have been scaled so that gray (0.5) corresponds to 0. Bright to positive derivative values, dark to negative.
APPLICATION: EDGE DETECTION

Smoothing + Derivative

\[I_x = \partial_x \ast (G_\sigma \ast X) = (\partial_x \ast G_\sigma) \ast X = G_{x;\sigma} \ast X \]

\[G_x = \frac{-x}{2\pi\sigma^4} \exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

\[G_y = \frac{-y}{2\pi\sigma^4} \exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

Derivative of Gaussian (DoG) Filters
Smoothing + Derivative

\[I_x = \partial_x * (G_\sigma * X) = (\partial_x * G_\sigma) * X = G_{x:\sigma} * X \]

\[G_x = \frac{-x}{2\pi\sigma^4} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \quad G_y = \frac{-y}{2\pi\sigma^4} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

\[G_\theta = \frac{-(x \cos \theta + y \sin \theta)}{2\pi\sigma^4} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

\[I_\theta = I_x \cos \theta + I_y \sin \theta \]

Just need to convolve twice. Gives us an expression for derivative along every direction.
APPLICATION: EDGE DETECTION

Smoothing + Derivative

\[I_\theta[n] = I_x[n] \cos \theta + I_y[n] \sin \theta \]

\[H[n] = \sqrt{I_x^2[n] + I_y^2[n]} = \max_\theta I_\theta[n] \]

\[\Theta[n] = \text{atan2}(I_y[n], I_x[n]) = \arg \max_\theta I_\theta[n] \]

Gives us gradient magnitude and direction.

Often applied even to filters that aren't "steerable" like DoG.
APPLICATION: EDGE DETECTION

I_x

I_y

I_{45°
APPLICATION: EDGE DETECTION

\[I_x \]

\[I_y \]

\[H \]
APPLICATION: EDGE DETECTION

I_x

I_y

$H > \epsilon$
APPLICATION: EDGE DETECTION

\[I_x \] \hspace{2cm} \[I_y \] \hspace{2cm} \[H > \epsilon \]
Extensions

- Non-maxima Supression: Keep an edge pixel only if its magnitude is higher than its neighbors along the direction of the derivative.

\[
\begin{array}{ccc}
 e & f & g \\
 b & a & c \\
 h & j & k \\
\end{array}
\]

Declare edge if \(a \) above threshold and:
- \(a > b \) and \(a > c \) if \(\theta = 0 \)
- \(a > f \) and \(a > j \) if \(\theta = 90 \)
- \(a > e \) and \(a > k \) if \(\theta = 45 \)
-

- Canny: Keep a lower magnitude edge pixel if it has a higher edge magnitude neighbor. Two thresholds (hysteresis)

- Second derivative filters.

See Szeliski Section 4.2
Pool them together to detect scene structure: E.g., Lines

Missed detections
Clutter
Occlusions

Edges are isolated per-pixel labels
Hough Transform

Consider ALL possible lines (on a 2D plane)
Hough Transform
- Consider ALL possible lines (on a 2D plane)
- This is a two dimensional search space, could parameterize it in different ways.

\[r = x \cos \theta + y \sin \theta \]

\[\theta \in [-\pi/2, \pi/2] \]

\[r \in [-r_{\text{max}}, r_{\text{max}}] \]
The equation for a line in polar coordinates is given by:

\[r = x \cos \theta + y \sin \theta \]

Hough Transform

Discretize this space into a bunch of buckets.
\[r = x \cos \theta + y \sin \theta \]

Hough Transform

Each edge pixel casts a vote for all lines it could belong to.

Compute by plugging in \(x, y \) into equation: get a value of \(r \) for each \(\theta \) (get a sinusoid)
\[r = x \cos \theta + y \sin \theta \]

Hough Transform

Each edge pixel casts a vote for all lines it could belong to.

Compute by plugging in \(x,y\) into equation: get a value of \(r\) for each \(\theta\) (get a sinusoid)

Do this for all pixels and see which 'bins' get the most votes.

Variants
- Each edge pixel only casts one vote based on angle. (with or without sign)
- Vote weighted by magnitude of gradient.
- Exclusive vote (select dominant line, remove vote from its pixels for other lines)

- Use same idea for line segments, circles, ellipses ...
OTHER NEIGHBORHOOD OPERATIONS

Median Filter / Order Statistics

\[Y[n] = \text{Median}\{X[n - n']\}_{N[n'] = 1} \]

- Neighborhood function \(N[n'] \in \{0, 1\} \)
- Often better at removing outliers than convolution.

Other ops: \(Y[n] = \text{max} / \text{min}\{X[n - n']\}_{N[n'] > 0} \)

Morphological Operations

- Conducted on binary images \(X[n] \in \{0, 1\} \)
- Erosion: \(Y[n] = \text{AND} \{X[n-n']\}_{N[n']=1} \) (1 if all neighbors 1)
- Dilation: \(Y[n] = \text{OR} \{X[n-n']\}_{N[n']=1} \) (1 if any neighbor 1)
- Opening: Erosion followed by Dilation
- Closing: Dilation followed by Erosion

See Szeliski Sec 3.3.2

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5 × 5 square. The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the dot, since it is not wide enough.
NEXT TIME

- Bilateral Filtering
- Fourier Transforms
- Making convolutions efficient
- Sampling and Scale
- Image Representations