CSE 559A: Computer Vision

Fall 2017: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu)

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Nov 9, 2017
Logistic Regression

For Binary Classification: \(\mathcal{X} \rightarrow [0, 1] \)

\[
f(x; w) = \sigma(w^T \tilde{x}) = \frac{\exp(w^T \tilde{x})}{1 + \exp(w^T \tilde{x})}
\]

- Output is interpreted as probability \(Pr(y = 1) \)
- \(w^T \tilde{x} \) are the log-odds.

\[
f(x; \theta) = \frac{1}{1 + \exp(-w^T \tilde{x})}
\]

\[
1 - f(x; \theta) = \frac{1}{1 + \exp(w^T \tilde{x})}
\]

\[
w^T \tilde{x} = \log \frac{f(x; \theta)}{1 - f(x; \theta)} = \log \frac{Pr(y = 1)}{1 - Pr(y = 1)} = \log \frac{Pr(y = 1)}{Pr(y = 0)}
\]
Logistic Regression

For Binary Classification: $\mathcal{X} \to [0, 1]$

$$f(x; w) = \sigma(w^T \tilde{x}) = \frac{\exp(w^T \tilde{x})}{1 + \exp(w^T \tilde{x})}$$

- To classify, $y = 1$ if $f(x; w) > 0.5$ and 0 otherwise.
- $y = 1$ if $w^T \tilde{x} > 0$, and 0 if $w^T \tilde{x} \leq 0$.
- \tilde{x} is some augmented variable of x.
 - "Linear Classifier" if $\tilde{x} = [x^T; 1]^T$
 - Could be polynomial $\tilde{x} = [1, x, x^2, x^3]$
 - Or other arbitrary non-linear functions of x
- \tilde{x} often called the "feature" vector.
- Some encoding of the input.
 - x could even be non-numeric, and you could define some numeric features.
Logistic Regression

For Binary Classification: \(\mathcal{X} \rightarrow [0, 1]\)

\[
f(x; w) = \sigma(w^T \tilde{x}) = \frac{\exp(w^T \tilde{x})}{1 + \exp(w^T \tilde{x})}
\]

- To classify, \(y = 1\) if \(w^T \tilde{x} > 0\) and 0 otherwise.

- "Feature engineering" or "Feature selection" was / is often useful
 - E.g., "census transform"
 - Feature vectors based on histograms of gradient orientations (HoG/SIFT)

- Note: Classifier is linear in chosen encoding.

- \(w^T \tilde{x} \nless \nless\) defines a "separating hyperplane" between positive and negative part of the space of \(\tilde{x}\).
GRADIENT DESCENT
Will correspond to a non-linear boundary in the original x space

Decision "boundary" Hyperplane
Logistic Regression

\[f(x; w) = \sigma(w^T \tilde{x}) = \frac{\exp(w^T \tilde{x})}{1 + \exp(w^T \tilde{x})} \]

- Cross-entropy / Negative Likelihood Loss

\[L(y, f(x; w)) = -y \log f(x; w) - (1 - y) \log(1 - f(x; w)) \]

\[f(x; \theta) = \frac{1}{1 + \exp(-w^T \tilde{x})} \quad 1 - f(x; \theta) = \frac{1}{1 + \exp(w^T \tilde{x})} \]
Logistic Regression

\[f(x; w) = \sigma(w^T \tilde{x}) = \frac{\exp(w^T \tilde{x})}{1 + \exp(w^T \tilde{x})} \]

- Cross-entropy / Negative Likelihood Loss

\[L(y, f(x; w)) = y \log [1 + \exp(-w^T \tilde{x})] + (1 - y) \log [1 + \exp(w^T \tilde{x})] \]

- Putting it all together, given a training set of \{(x_t, y_t)\}:

\[w = \arg \min_w \frac{1}{T} \sum_{t=1}^{T} y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)] \]
GRADIENT DESCENT

Logistic Regression

\[w = \arg \min_w \frac{1}{T} \sum_{t=1}^{T} y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)] \]

- You can show that this loss is a convex function of \(w \)
 (compute the Hessian matrix and show that it's eigenvalues are non-negative)
- So it has a single global minimum.

But how do we find it?
Gradient Descent

Logistic Regression

\[
 w = \arg \min_w \frac{1}{T} \sum_{t=1}^{T} y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)]
\]

More General Form

\[
 w = \arg \min_w C(w) \quad C(w) = \frac{1}{T} \sum_t C_t(w)
\]

Minimize a cost that is a function of parameters, and a sum of cost functions, each coming from a different training sample.

Gradient Descent

- Begin with initial guess \(w_0\)
- At each iteration \(i\):
 - \(w_{i+1} \leftarrow w_i - \gamma \nabla_w C(w_i)\)
GRADIENT DESCENT

\[w = \arg \min_w C(w) \quad C(w) = \frac{1}{T} \sum_t C_t(w) \]

- Begin with initial guess \(w_0 \)
- At each iteration \(i \):
 - \(w_{i+1} \leftarrow w_i - \gamma \nabla_w C(w_i) \)
- At each iteration, we update the parameters \(w \) by "moving", in \(w \)-space, in the opposite direction of the gradient (at that point \(w_i \)).
- We also move by length proportional to the magnitude of the gradient.
- \(\gamma \) is the step-size. When running optimization for training, often called the "learning rate".
GRADIENT DESCENT

The diagram illustrates the concept of gradient descent, a method used in optimization problems to find the minimum of a function. The graph shows a function where the gradient is used to update the parameters (W) iteratively. The process starts at a point on the function (C axis) and moves along the function's curve, updating the parameters in the direction of the negative gradient to move towards the minimum.
GRADIENT DESCENT

W_2

W_1
If you select optimal step size by doing a "line search" for γ, can prove that gradient-descent will converge. If function is convex, converge to unique global minimum. Second order variants that consider the Hessian matrix: Newton & Quasi-Newton Methods
- Gauss-Newton, Levenberg-Marquardt, ...

But simple gradient descent suffices / our only choice when:

- Function isn't convex.
- Can't afford to do line search.
- So many parameters that can't compute Hessian.

Also, no theoretical guarantees.

Theory still catching up. Meanwhile, we'll try to understand the "behavior" of the gradients.
GRADIENT DESCENT

\[
\nabla_w C(w) = \left[\frac{\partial}{\partial w_1} C(w) \atop \frac{\partial}{\partial w_2} C(w) \atop \vdots \right]
\]

If \(C(w) = \frac{1}{T} \sum_t C_t(w) \), then \(\nabla_w C(w) = \frac{1}{T} \nabla_w C_t(w) \)

Logistic Regression

\[
C_t(w) = y_t \log[1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log[1 + \exp(w^T \tilde{x}_t)]
\]

What is \(\nabla_w C_t(w) \), the gradient of the loss from a single training example?
GRADIENT DESCENT

\[C_t(w) = y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)] \]

Ok, what is the derivative of

\[C_t(p) = y_t \log [1 + \exp(-p)] + (1 - y_t) \log [1 + \exp(p)] \]

with respect to \(p \) (where \(p \) is a scalar).

\[\frac{\partial}{\partial p} C_t(p) = \frac{\exp(p)}{1 + \exp(p)} - y_t \]

\[\frac{\partial}{\partial p} C_t(p) = y_t \frac{-\exp(-p)}{1 + \exp(-p)} + (1 - y_t) \frac{\exp(p)}{1 + \exp(p)} \]

\[= \frac{\exp(p)}{1 + \exp(p)} - y_t \left[\frac{\exp(-p)}{1 + \exp(-p)} + \frac{\exp(p)}{1 + \exp(p)} \right] \]

\[= \frac{\exp(p)}{1 + \exp(p)} - y_t \left[\frac{1}{1 + \exp(p)} + \frac{\exp(p)}{1 + \exp(p)} \right] \]
GRADIENT DESCENT

\[C_t(w) = y_t \log \left[1 + \exp(-w^T \tilde{x}_t) \right] + (1 - y_t) \log \left[1 + \exp(w^T \tilde{x}_t) \right] \]

\[C_t(p) = y_t \log \left[1 + \exp(-p) \right] + (1 - y_t) \log \left[1 + \exp(p) \right] \]

\[\frac{\partial}{\partial p} C_t(p) = \frac{\exp(p)}{1 + \exp(p)} - y_t \]

Observations

- \(\frac{\exp(p)}{1+\exp(p)} \) is basically the output \(f(x_t; w) \), predicted probability that \(y_t = 1 \).
- Remember: this is the expression for gradient of \(p \), i.e. logit / log-odds.
- Gradient 0 if \(y_t = 0 \) and probability 0, \(y = 1 \) and probability 1.
 - Do nothing if predicting right answer with perfect confidence.
- If we say probability > 0, and \(y_t = 0 \). Gradient is positive.
- If we say probability < 1, and \(y_t = 1 \). Gradient is negative.

Remember we move in the opposite direction of gradient.
Also, changing \(p \) makes a much bigger difference in the corresponding probability, when \(p \) is near 0 / probability near 0.5.
GRADIENT DESCENT

\[C_t(w) = y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)] \]

\[C_t(p) = y_t \log [1 + \exp(-p)] + (1 - y_t) \log [1 + \exp(p)] \]

\[\frac{\partial}{\partial p} C_t(p) = \frac{\exp(p)}{1 + \exp(p)} - y_t \]

But this is still derivative with respect to \(p \). We want gradient with respect to \(w \).

\[\frac{\partial}{\partial w^j} C_t(w) = \tilde{x}^j \times \left[\frac{\exp(p)}{1 + \exp(w^T \tilde{x}_t)} - y_t \right] \]

\[\nabla_w C_t(w) = \tilde{x} \left[\frac{\exp(p)}{1 + \exp(w^T \tilde{x}_t)} - y_t \right] \]

\[\nabla_w C_t(w) = \nabla_w (w^T \tilde{x}) \left[\frac{\exp(p)}{1 + \exp(w^T \tilde{x}_t)} - y_t \right] \]

\[\nabla_w C_t(w) = \nabla_w p(w) \frac{\partial C_t(p)}{\partial p} \]
Putting it together:

- At each iteration i,
 - Based on current w, compute $f(x_t, w) = \hat{y}_t$
 - Compute derivative of the "output" as $\hat{y}_t - y_t$
 - Multiply by x_t to get ∇_w
 - Change w by subtracting some γ times this gradient.

\[
 w = \arg \min_w \frac{1}{T} \sum_{i=1}^{T} y_t \log[1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log[1 + \exp(w^T \tilde{x}_t)]
\]
GRADIENT DESCENT

\[w = \arg \min_w \frac{1}{T} \sum_{i=1}^{T} y_t \log[1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log[1 + \exp(w^T \tilde{x}_t)] \]

Putting it together:

- At each iteration \(i \),
 - Based on current \(w \), compute \(f(x_t, w) = \hat{y}_t \) for every training sample
 - Compute derivative of the "output" as \(\hat{y}_t - y_t \) for every training sample
 - Multiply by \(x_t \) and average across all training samples to get \(\nabla_w \)
 - Change \(w \) by subtracting some \(\gamma \) times this gradient.

Expensive when we have a LOT of training data.
STOCHASTIC GRADIENT DESCENT

\[w = \arg \min_w \frac{1}{T} \sum_t C(x_t, y_t; w) \]

\[\nabla_w = \frac{1}{T} \sum_t \nabla_w C(x_t, y_t; w) \]

Remember, summation over training samples meant to approximate an expectation over \(P_{XY}(x, y) \).

\[\frac{1}{T} \sum_t C(x_t, y_t; w) \rightarrow \mathbb{E}_{P_{XY}(x, y)} C(x, y; w) \]

\[\frac{1}{T} \sum_t \nabla_w C(x_t, y_t; w) \rightarrow \mathbb{E}_{P_{XY}(x, y)} \nabla_w C(x, y; w) \]

In other words, we are approximating the "true" gradient with gradients over samples.

What if we used a smaller number of samples in each iteration, but different samples in different iterations?
STOCHASTIC GRADIENT DESCENT

- **Single sample**
 \[w_{i+1} \leftarrow w_i - \gamma \nabla_w C_t(x_t, y_t; w_i) \]
 At each iteration, choose a random \(t \in \{1, 2, \ldots, T\} \).

- **"Mini"-batched SGD (sometimes GD is called Batched GD)**
 \[w_{i+1} \leftarrow w_i - \gamma \nabla_w \frac{1}{B} \sum_{t \in B} C_t(x_t, y_t; w_i) \]
 At each iteration, choose a random smaller batch \(B \) of size \(B \ll T \).

With replacement? Without replacement?
STOCHASTIC GRADIENT DESCENT

In practice:

- Shuffle order of training examples
- Choose a batch size
- Take consecutive groups of B samples as you loop through iterations
 - $[1,B]$ in iteration 1
 - $[B+1,2B]$ in iteration 2
 - …
- Once you reach the end of the training set (called one "epoch"), shuffle the order again.
STOCHASTIC GRADIENT DESCENT

\[w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

General Notes

- The gradient over a mini-batch is an "approximation", or a "noisy" version of the gradient over the true training set.

\[\frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) = \frac{1}{T} \sum_{t=1}^{T} \nabla_w C_t(x_t, y_t; w_i) + \epsilon \]

- Typically, if you decrease the batch-size, you will want to decrease your step size (because you are "less sure" about the gradient).
STOCHASTIC GRADIENT DESCENT

\[w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

General Notes

Say your cost function is convex, and you care only about decreasing this cost (not worried about overfitting)

- Larger batch size will always give you "better" gradients.
- But diminishing returns after a batch size.
- Computational cost is number of examples per iteration \times number of iterations for convergence
 - Higher batch means more computation per iteration, but may mean fewer iterations required to converge.
- Best combination of step size and batch size is an empirical question.
- Another factor: parallelism.
 - Note that you can compute the gradient of all samples of your batch in parallel.
 - Ideally, you want to at least "saturate" all available parallel threads.
STOCHASTIC GRADIENT DESCENT

\[w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

General Notes

If your cost function is NOT convex, and/or you are worried about overfitting.

- Noise in your gradients might be a good thing!
- Might help you escape local minima.
- Might prevent you from overfitting to train set.
- Try different batch sizes, check performance on dev set, not just train set.
STOCHASTIC GRADIENT DESCENT

Momentum

Standard SGD:

\[g_{i+1} = \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]
\[w_{i+1} \leftarrow w_i - \gamma g_{i+1} \]

With Momentum:

For \(\beta < 1 \):

\[g_{i+1} = \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) + \beta g_i \]
\[w_{i+1} \leftarrow w_i - \gamma g_{i+1} \]

- Keep adding the gradient from a previous batch, again and again across iterations, with decaying weight.
- Remember: \(g_i \) was computed with respect to a different position in \(w \) space.
- People often use \(\beta \) as high as 0.9 or 0.99.
- Will need to revisit "best" value of \(\gamma \) when you change \(\beta \).
LOGISTIC REGRESSION

\[w = \arg \min_w \frac{1}{T} \sum_t C_t(w) \]

\[C_t(w) = y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)] \]

- Defined linear classifier on augmented vector \(\tilde{x} \)
- Used gradient descent to learn \(w \).
 - Looked at behavior of gradients.
 - Simplified computation with stochasticity.
- At test time, sign of \(w^T \tilde{x} \) gives us our label.

The problem is:

- The definition of augmented vector \(\tilde{x} \) is hand-crafted
- We have manually engineered our features.
- The only thing we're learning is a linear classifier on top.

Want to learn the features themselves!

Given that SGD works, what's stopping us from learning a \(g(x) = \tilde{x} \)?