GROUPING & SEGMENTATION

SLIC

\[L = \arg \min_L \min_{\{\mu_k\}} \sum_{k=1}^{K} \sum_{n: L[n]=k} \|I'[n] - \mu_k\|^2 \]

- Begin with some initial assignment \(L[n] \).
- At each iteration ...

Step 1: For each \(k \), assign

\[\mu_k = \text{Mean} \{ I'[n] \mid L[n]=k \} \]

Step 2: For each \(n \), assign

\[L[n] = \arg \min_k \|I'[n] - \mu_k\|^2 \]

- How do we initialize?
- Do we really need to do \(K \times N \) computations of \(\|I'[n] - \mu_k\|^2 \)?

GROUPING & SEGMENTATION

SLIC: Initialization

- Actually, begin with an assignment of \(\{\mu_k\} \) (and do a step 2).
- Given desired number of super-pixels \(K \), choose \(K \) points on a grid.
 - Spaced horizontally and vertically apart by \(S = \sqrt{\frac{H \times W}{K}} \).
- Set each \(u_k = I'[n_k] \) as the augmented vector of one of these points.
- In step 2, each seed is going to attract pixels in its neighborhood that are most like it.

GENERAL

- PSET 4 posted Tuesday.
- Will require use of the census function from last PSET 3.
- Recitation next Friday November 10.

Upcoming Events:
- CSE Fall research day this Friday
- WiCS Event: Hidden Figures Awareness: Nov 15

Checkout CSE website.
SLIC: Initialization

- Actually, begin with an assignment of \(\{\mu_k\} \) (and do a step 2).
- Given desired number of super-pixels \(K \), choose \(K \) points on a grid.
 - Spaced horizontally and vertically apart by \(S = \sqrt{HW/K} \)
- Set each \(\mu_k \) as the augmented vector of one of these points.
- In step 2, each seed is going to attract pixels in its neighborhood that are most like it.
- Sometimes this initialization gives you a 'seed' that lies right on an edge.
 - Bad because pixel on either side of edge will often look nothing like it.
- Solution: Look in a 3x3 neighborhood, and choose pixel with lowest gradient magnitude.

SLIC: Minimization

At any given iteration, for step 2:

- Don't consider all possible \(K \) for every \(n \).
- Instead, say that a pixel \(n \) can only be assigned to a cluster \(k \) if
 \(n \) is within a \(2S \times 2S \) window around the spatial co-ordinates in \(\mu_k \).
- Note that \(\mu_k \)'s will no longer be on a regular grid.

Graph-based Methods

Foreground / Background Segmentation

Image from Rother et al., GrabCuts.
GROUPING & SEGMENTATION

Graph-based Methods

Assign a label of 1 (foreground) or 0 (background) for each pixel in the image.

Let's say user has labeled some pixels as foreground or background.
(or these are noisy / sparse predictions from some algorithm)

$L = \arg \min_{L[n] \in \{0,1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{n,n'}(L[n], L[n'])$

Kind of like our stokes setup, but binary labeling problem.

GROUPING & SEGMENTATION

Graph-based Methods

$L = \arg \min_{L[n] \in \{0,1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{n,n'}(L[n], L[n'])$

GROUPING & SEGMENTATION

Graph-based Methods

$L = \arg \min_{L[n] \in \{0,1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{n,n'}(L[n], L[n'])$

GROUPING & SEGMENTATION

Graph-based Methods

$L = \arg \min_{L[n] \in \{0,1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{n,n'}(L[n], L[n'])$

Again, pairs of neighboring pixels.
Horizontal / Vertical / Diagonal.
GROUPING & SEGMENTATION

Graph-based Methods

\[L = \operatorname{arg\,min}_{L[n] \in \{0,1\}} C[n, L[n]] + \sum_{(n,n') \in E} S_{n,n'}(L[n], L[n']) \]

Now will depend on pixel location. Often based on intensity differences / whether there is an edge.

References

- Rother et al., GrabCut - Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004.

GROUPING & SEGMENTATION

MACHINE LEARNING: CRASH COURSE / QUICK RECAP

So far, given an input \(X \) and desired output \(Y \) we have

- Tried to explain the relationship of how \(X \) results from \(Y \)
 - \(X = \) observed image(s) / \(Y = \) clean image, sharp image, surface normal, depth
 - Noise, photometry, geometry, ...
 - Often put a hand-crafted "regularization" cost to compute the inverse
 - Depth maps are smooth
 - Image gradients are small
- But sometimes, there is no way to write-down a relationship between \(X \) and \(Y \)?
 - \(X = \) image, \(Y = \) Does the image contain a dog?
- Even if there is, the hand-crafted regularization cost is often arbitrary.
 - Real images contain far more complex and subtle regularity.
Instead, we are going to assume that there is some underlying joint probability distribution $P_{XY}(x, y)$

- And our goal is to compute:
 - The best estimate of y conditioned on a specific value of x,
 - To minimize some notion of "risk" or "loss"

Define a loss function $L(y, \hat{y})$, which measures how much we dislike \hat{y} as our estimate, when y is the right answer.

Examples

- $L(y, \hat{y}) = \|y - \hat{y}\|^2$
- $L(y, \hat{y}) = \|y - \hat{y}\|$
- $L(y, \hat{y}) = 0$ if $y = \hat{y}$, and some C otherwise.

So we have a loss (depends on the application)
- We can compute $P(y|x)$ from P_{XY}.
- But we don’t know P_{XY} !

Assume we are given as training examples, samples $(x, y) \sim P_{XY}$ from the true joint distribution.

Given $\{(x_i, y_i)\}$ as samples from P_{XY}, we could:

- Estimate P_{XY}
 - Choose parametric form for the joint distribution (Gaussian, Mixture of Gaussians, Bernoulli, …)
 - Estimate the parameters of that parametric form to “best fit” the data.
 - Depending again on some notion of fit (often likelihood)
 $$P_{XY}(x, y) = f(x, y; \theta)$$
 $$\theta = \arg \max \theta \sum_i \log f(x_i, y_i; \theta)$$

Maximum Likelihood Estimation
Given a bunch of samples \(\{(x_i, y_i)\} \) from \(P_{XY} \),

we want to learn a function \(y = f(x) \), such that

given a typical \(x, y \) from \(P_{XY} \), the loss \(L(y, f(x)) \) is low.

\[
 f = \arg \min_f \int \int L(y, f(x)) P_{XY}(x, y) dx dy
\]

What we're going to is to replace the double integration with a summation over samples!

Empirical Risk Minimization

- So instead of first fitting the probability distribution from training data, and then given a new input, minimizing the loss under that distribution ...
- We are going to do a search over possible functions that "do well" on the training data, and assume that a function that minimizes "empirical risk" also minimizes "expected risk".

\[
\hat{y}(x) = \arg \min_{\hat{y}} \int L(y, \hat{y}) P(y|x) \, dy
\]

\[
P(y|x) = \frac{P_{XY}(x, y)}{\int P_{XY}(x, y') \, dy'}
\]

\[
P_{XY}(x, y) = f(x, y; \theta)
\]

\[
\theta = \arg \max_{\theta} \sum_i \log f(x_i, y_i; \theta)
\]
MACHINE LEARNING: CRASH COURSE / QUICK RECAP

Next time:

- How do you choose the space of possible functions to minimize over?
- What are the consequences of this to the expected error?
- How do you solve the optimization problem, efficiently?