GLOBAL OPTIMIZATION (RECAP)

\[d = \arg \min_d \sum_n C[n, d[n]] + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

- Discrete optimization of disparity map \(d \), each \(d[n] \in \{0, 1, \ldots, D - 1\} \).
- \(C[n, d[n]] \) comes from our matching cost. How well \(L[x, y] \) matches \(R[x - d[x, y], y] \).
- \(E \) is the set of all pairs of “neighboring” pixel locations.
- \(S \) is a function that indicates a preference for \(d[n] \) and \(d[n'] \) to be the same.

Example 1: 0 if \(d[n'] = d[n] \), 1 otherwise.
Example 2: \(|d[n'] - d[n]| \)
Example 3:
- 0 if \(d[n'] = d[n] \)
- \(T_1 \) if \(|d[n'] - d[n]| < \epsilon \)
- \(T_2 \) otherwise.

GLOBAL OPTIMIZATION

\[d = \arg \min_d \sum_n C[n, d[n]] + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

Iterated Conditional Modes

- Begin with \(d_0 = \arg \min_d C[n, d[n]] \)
- At each iteration \(t \), compute \(d_{t+1} \) from \(d_t \) by solving for each pixel in \(d_{t+1} \) assuming neighbors have values from \(d_t \),

\[d_{t+1}[n] = \arg \min_{d[n']} C[n, d[n']] + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

Does it converge?

- No Guarantee.
 A modified version would converge to a local minima if in each iteration, we only updated one pixel.
GLOBAL OPTIMIZATION

\[
d = \arg \min_d \sum_n C[n, d[n]] + \lambda \sum_{(n, n') \in \mathcal{E}} S(d[n], d[n'])
\]

Iterated Conditional Modes (slow!)

- Begin with \(d_0 = \arg \min_d C[n, d[n]]\)
- At each iteration \(t\), compute \(d_{t+1}\) from \(d_t\), by solving for one pixel in \(d_{t+1}\) assuming neighbors have values from \(d_t\).

\[
d_{t+1}[n_{t+1}] = \arg \min_d C[n_{t+1}, d_n] + \lambda \sum_{(n, n') \in \mathcal{E}_{n_{t+1}}} S(d_n, d_{t}[n'])
\]

Does it converge?

- No Guarantee.
 A modified version would converge to a local minima if in each iteration, we only updated one pixel \(n_t\) at iteration \(t\).

Question: Are \(d[n]\) and \(d[n']\) independent if:

- If \((n, n') \in \mathcal{E}\) -- pixels are neighbors?

Reminder: Two variables are independent if we can express their joint distribution as a product of distributions on each variable.

GLOBAL OPTIMIZATION

\[
p(d) \propto \prod_n \exp(-C[n, d[n]]) \prod_{(n, n') \in \mathcal{E}} \exp(-\lambda S(d[n], d[n']))
\]

- These kind of cost functions / optimization problems are quite common in vision.
- The cost can be interpreted as a log probability distribution:

\[
p(d) \propto \prod_n \exp(-C[n, d[n]]) \prod_{(n, n') \in \mathcal{E}} \exp(-\lambda S(d[n], d[n']))
\]

- Joint distribution over all the \(d[n]\) values.
GLOBAL OPTIMIZATION

Question: Are \(d[n] \) and \(d[n'] \) independent if:

- If \((n, n') \in E \) -- pixels are neighbors. No
- If \((n, n') \not\in E \) -- pixels are not neighbors?

GLOBAL OPTIMIZATION

Question: Are \(d[n] \) and \(d[n'] \) independent if:

\[
p(d) \propto \prod_n \exp(-C[n,d[n]]) \prod_{(n,n') \in E} \exp(-\lambda S(d[n], d[n']))
\]

GLOBAL OPTIMIZATION

Question: Are \(d[n] \) and \(d[n'] \) independent if:

\[
p(d) \propto \prod_n \exp(-C[n,d[n]]) \prod_{(n,n') \in E} \exp(-\lambda S(d[n], d[n']))
\]

GLOBAL OPTIMIZATION

Question: Are \(d[n] \) and \(d[n'] \) independent if:

\[
p(d) \propto \prod_n \exp(-C[n,d[n]]) \prod_{(n,n') \in E} \exp(-\lambda S(d[n], d[n']))
\]

GLOBAL OPTIMIZATION

\[
d = \arg \max_d p(d) = \arg\min_d \sum_n C[n,d[n]] + \lambda \sum_{(n,n') \in E} S(d[n], d[n'])
\]

Question: Are \(d[n] \) and \(d[n'] \) independent if:

- If \((n, n') \not\in E \), "conditioned" on all the neighbors of \(n \) being observed. \(p(d[n], d[n'] \mid \{d[n'']\}) \)

YES. This is the Markov property. And these kinds of graphical models are called Markov random fields.

Graph structure encodes "conditional independence".
Iterated Conditional Modes really slow.
No guaranteed solution for arbitrary graphs.
But could solve if our graph were a chain (or more generally a tree).

\[
d = \arg \min_d \sum_x C[n, d[n]] + \lambda \sum_{(n,n') \in E} S(d[n], d[n'])
\]

The total cost of those blocks and the edges was the least.

Say we only had two nodes:

\[
d_1, d_2 = \arg \min_{d_1, d_2} C[1, d_1] + C[2, d_2] + \lambda S(d_1, d_2)
\]

\[
d_2 = \arg \min_{d_1} C[1, d_1] + C[2, d_2] + \lambda S(d_1, d_2)
\]

This is the \(d_i\) corresponding to the optimal path.

\[
\sum_x C[x, d[x]] + \lambda \sum_x S(d[x], d[x + 1])
\]
\[d_1, d_2, d_3 = \arg \min_d C[1, d_1] + C[2, d_2] + C[3, d_3] + \lambda S(d_1, d_2) + \lambda S(d_2, d_3)\]

\[d_3 = \arg \min_{d_3} C[3, d_2] + \min_{d_2} \left[\lambda S(d_2, d_3) + C[2, d_2] + \lambda S(d_1, d_2) + C[1, d_1] \right]\]

This is precisely what we computed for the 2 node case. Also note that once you have this, you don’t care about what the value of \(d\) was in the inner minimization.

\[\sum_x C[x, d[x]] + \lambda \sum_x S(d[x], d[x + 1])\]

We go from left to right, and doing an arg min on the last \(C\) gives us the disparity of the last node. And then we backtrack to find the full chain.

\[z[x + 1, d] = \arg \min_{d'} \lambda S(d, d') + \bar{C}[x, d']\]

\[\bar{C}[x + 1, d] = C[x + 1, d] + \min_{d'} \lambda S(d, d') + \bar{C}[x, d']\]

Forward
\[\bar{C}[0, d] = C[0, d]\]

\[z[x + 1, d] = \arg \min_{d'} \lambda S(d, d') + \bar{C}[x, d']\]

\[\bar{C}[x + 1, d] = C[x + 1, d] + \min_{d'} \lambda S(d, d') + \bar{C}[x, d']\]

Backward
\[d[x_{end}] = \arg \min_d \bar{C}[x_{end}, d]\]

\[d[x] = z[x + 1, d[x + 1]]\]
GLOBAL OPTIMIZATION

We could apply this on individual epipolar lines.

GLOBAL OPTIMIZATION

That’s why we want to use a full 2D grid.
But forward-backward only works on chains (or graphs without cycles).
One flavor of approximate algorithms apply the same idea of forming a $\bar{C}[x, d]$

- TRW-S
- Loopy Belief Propagation
- SGM

GLOBAL OPTIMIZATION

Semi-Global Matching

$\bar{C}[x, d] = C[x, d] + \min_{d'} \bar{C}[x - 1, d'] + \lambda S(d, d')$

This is going left to right in the horizontal direction.

Idea: Compute different \bar{C} along different directions ...

and average.

GLOBAL OPTIMIZATION

Semi-Global Matching

$\bar{C}_b[n, d] = C[n, d] + \min_{d'} \bar{C}_b[n - [1, 0]^T, d'] + \lambda S(d, d')$
$\bar{C}_d[n, d] = C[n, d] + \min_{d'} \bar{C}_d[n + [1, 0]^T, d'] + \lambda S(d, d')$
$\bar{C}_{du}[n, d] = C[n, d] + \min_{d'} \bar{C}_{du}[n - [0, 1]^T, d'] + \lambda S(d, d')$
$\bar{C}_{ld}[n, d] = C[n, d] + \min_{d'} \bar{C}_{ld}[n + [0, 1]^T, d'] + \lambda S(d, d')$

$d[n] = \arg \min_d \bar{C}_b[n, d] + \bar{C}_d[n, d] + \bar{C}_{ud}[n, d] + \bar{C}_{ld}[n, d]$
GLOBAL OPTIMIZATION

Semi-Global Matching