GENERAL

- Almost all PSET 1 submissions in! PSET 2 Out.
 - Will post PSET 1 prob6 solution for use in PSET 2 (soon, on BB).
- Same Monday Office Hours Location for next week.
- Recitation Oct 6. Strongly suggest you try all problems in the HW before then.
- PSET 2: Last two problems for normal to depth
 - Un-comment line in code to use your own normal estimates

PHOTOMETRIC STEREO++

- Robust Photometric Stereo
 - In the presence of shadows, specular highlights
 - Simple option: For each pixel, just drop the darkest n and brightest n pixels.

Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery

Wu et al., PAMI 2011 / ACCV 2010

PHOTOMETRIC STEREO++

\[I_1 = \ell_1^T (\rho \hat{n}) \]
\[I_2 = \ell_2^T (\rho \hat{n}) \]
\[I_3 = \ell_3^T (\rho \hat{n}) \]

Three measurements, three images, only works for static scenes!
PHOTOMETRIC STEREO++

Solutions?

- More colors, hyperspectral imaging?

 Every additional channel, adds another unknown.
 (But with narrow wavelength bands, you can assume albedo of neighboring bands vary smoothly).

- What if I knew albedo (or even just albedo chromaticity)?

 - Want to capture shape of object, let’s paint it’s surface with known color paint.
 (actually, used sometimes ... use powder instead of paint)

 - Pull something with known albedo tightly over object

\[
I_R = \ell_R^T(\rho_R \hat{n}) \\
I_G = \ell_G^T(\rho_G \hat{n}) \\
I_B = \ell_B^T(\rho_B \hat{n})
\]

Multiplex in color!!

Three observations, five unknowns.

(so close)

PHOTOMETRIC STEREO++

Solutions?

- More colors, hyperspectral imaging?

 Every additional channel, adds another unknown.
 (But with narrow wavelength bands, you can assume albedo of neighboring bands vary smoothly).

- What if I knew albedo (or even just albedo chromaticity)?

 - Want to capture shape of object, let’s paint it’s surface with known color paint.
 (actually, used sometimes ... use powder instead of paint)

 - Pull something with known albedo tightly over object

\[
I_R = \ell_R^T(\rho_R \hat{n}) \\
I_G = \ell_G^T(\rho_G \hat{n}) \\
I_B = \ell_B^T(\rho_B \hat{n})
\]

Multiplex in color!!

Three observations, five unknowns.

(so close)
PHOTOMETRIC STEREO++

Solutions?
- More colors, hyperspectral imaging?
 - Every additional channel adds another unknown.
 (But with narrow wavelength bands, you can assume albedo of neighboring bands vary smoothly).
- What if I knew albedo (or even just albedo chromaticity)?
 - Want to capture shape of object, let's paint it's surface with known color paint.
 (actually, used sometimes ... use powder instead of paint)
 - Pull something with known albedo tightly over object
- Make assumptions: albedo is smooth, shape is smooth, solve with a prior / regularizer!

\[I_R = \ell_R^T (\rho_R \hat{n}) \]
\[I_G = \ell_G^T (\rho_G \hat{n}) \]
\[I_B = \ell_B^T (\rho_B \hat{n}) \]

Multiplex in color!!

Three observations, five unknowns.

(so close)

GENERAL SHADING

Multiple Point Light Sources, all at infinity, on at the same time (not PS)

\[I = \ell_1^T (\rho \hat{n}) \]
\[+ \ell_2^T (\rho \hat{n}) \]
\[+ \ell_3^T (\rho \hat{n}) \]

GENERAL SHADING

General Illumination from Infinity

From infinity implies that the angles of light to the point won't depend on the point's position

Two points with the same surface normal and same albedo will reflect the same light

Lambertian Calibration Target

Environment as seen on a Glass Sphere
GENERAL SHADING

For known albedo, gives us total irradiance for every normal.

\[L_o(\theta_o, \phi_o) = K_c \int L_i(\theta_i, \phi_i) \cos \theta_i \, d\omega_i \]

Lambertian Calibration Target

GENERAL SHADING

\[L_o(\theta_o, \phi_o) = K_t \int L_i(\theta_i, \phi_i) \cos \theta_i \, d\omega_i \]

Instead of \(\langle n_i \rangle \), now have a 'lookup table' for each normal.

cumbersome, so sometimes approximated using "spherical harmonics"

\[I = \rho \hat{n}^T L \hat{n} \]

\[L_o(\theta_o, \phi_o) = K_c \int L_i(\theta_i, \phi_i) \cos \theta_i \, d\omega_i \]

Lambertian Calibration Target

GENERAL SHADING

Can apply the same idea to handle non-lambertian shading

- Put sphere of same material as object in to the scene.
 (assume constant BRDF on target)

- Assume both light and camera far away from the object.

- Then same normal on both sphere and object will produce the same intensity.

NATURAL SHADING

Want this to work on natural images taken in natural illumination....

- General unknown illumination environment
- General unknown shape
- General unknown albedo
 Object possibly not Lambertian
The division is annoying, makes projection non-linear. Can no longer use matrices / linear operations to relate co-ordinates. But we like matrix operations!

Solution: Homogeneous Co-ordinates

- 2D Cartesian Co-ordinates: \((x, y)\)
- 2D Homogeneous Co-ordinates: \((\alpha x, \alpha y, \alpha)\)
- Cartesian to Homogeneous: \((x, y) \rightarrow (\alpha x, \alpha y, \alpha)\)
 - When \(\alpha = 1\), this is called "augmented": \((x, y, 1)\)
- Homogeneous to Cartesian: \((x', y', \alpha) \rightarrow \left(\frac{x'}{\alpha}, \frac{y'}{\alpha}\right)\)
- A whole family of homogeneous co-ordinates map to the same cartesian co-ordinate
 - Over-parameterization of a 2D point
 - Denote this equality by \(\sim\): \((a_1 x, a_1 y, a_1) \sim (a_2 x, a_2 y, a_2)\)
- Space of 2D Homogeneous co-ordinates denoted as \(P^2 = \mathbb{R}^3 - (0, 0, 0)\)
- Note that \((x, y, 0)\) is defined. In cartesian co-ordinates, it is the point at infinity along the line joining \((0, 0)\) to \((x, y)\).
- 3D Homogeneous Co-ordinates: \((x, y, z) \rightarrow (\alpha x, \alpha y, \alpha z, \alpha)\)
Turned non-linear perspective projection into a non-linear operation.

Here's a different projection matrix:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} ax \\ ay \\ az \\ \alpha \end{bmatrix}$$

Homogeneous co-ordinates

$$\frac{a}{c} = -\frac{fx}{z} \quad \frac{b}{c} = -\frac{fy}{z}$$

Works for all non-zero values of α.

Orthographic Projection

- Turned non-linear perspective projection into a non-linear operation.
- Here's a different projection matrix:

$$P_{2d} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

What does this represent?

$$(x, y, z) \rightarrow (x, y)$$

Orthographic Projection

Preserves parallel lines

Doesn't really correspond to a real camera
HOMOGENEOUS CO-ORDINATES

- Also useful to represent translation, rotation, skew in addition to projection
- Learn to chain together all these operations to:
 - Relate points in 3D to points in image
 - Verify angles, metric lengths from calibration targets, ...
 - Relate points in two images from different cameras