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ABSTRACT

JCilk extends the Java language to provide call-return semantics

for multithreading, much as Cilk does for C. Java’s built-in thread

model does not support the passing of exceptions or return values

from one thread back to the “parent” thread that created it. JCilk
imports Cilk’s fork-join primitivesspawn andsync into Java to
provide procedure-call semantics for concurrent subcomputations
This paper shows how JCilk integrates exception handling with
multithreading by defining semantics consistent with the existing
semantics of Javasry andcat ch constructs, but which handle
concurrency in spawned methods.

JCilk’s strategy of integrating multithreading with Java’s excep-
tion semantics yields some surprising semantic synergies. In partic-
ular, JCilk extends Java’s exception semantics to allow exceptions

to be passed from a spawned method to its parent in a natural wayp

that obviates the need for Cilkisnl et andabort constructs.
This extension is “faithful” in that it obeys Java’'s ordinary serial
semantics when executed on a single processor. When execute
in parallel, however, an exception thrown by a JCilk computation
signals its sibling computations to abort, which yields a clean se-
mantics in which only a single exception from the enclogimy
block is handled. The decision to implicitly abort side computa-
tions opens a Pandora’s box of subsidiary linguistic problems to
be resolved, however. For instance, aborting might cause a com-
putation to be interrupted asynchronously, causing havoc in pro-
grammer understanding of code behavior. To minimize the com-
plexity of reasoning about aborts, JCilk signals them “semisyn-
chronously” so that abort signals do not interrupt ordinary serial
code. In addition, JCilk propagates an abort signal throughout a
subcomputation naturally with a built-i@i | kKAbort exception,
thereby allowing programmers to handle clean-up by simply catch-
ing theCi | kAbort exception.

The semantics of JCilk allow programs with speculative compu-
tations to be programmed easily. Speculation is essential for par-
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allelizing programs such as branch-and-bound or heuristic search.
We show how JCilk’s linguistic mechanisms can be used to pro-
gram a solution to the “queens” problem with speculative compu-
tations.

1. INTRODUCTION

JCilk is a Java-based multithreaded language for parallel pro-
gramming that extends the semantics of Java [13] by introducing
“Cilk-like” [10, 35] linguistic constructs for parallel control. JCilk
supplies Java with the ability for procedures to be executed in par-
allel and return results, much as Cilk provides call-return semantics
for multithreading in a C language [20] context. These facilities are
not available in Java’s threading model [13, Ch. 11] or in the Posix
thread specification [18] for C threading libraries. When embed-
ding new linguistic primitives into an existing language, however,
one must ensure that the new constructs interact nicely with ex-
isting constructs. Java’s exception mechanism turns out to be the
anguage feature most directly impacted by the new Cilk-like prim-
itives, but surprisingly, the interaction is synergistic, not antagonis-
tic.

The philosophy behind our JCilk extension to Java follows that
of the Cilk extension to C: the multithreaded language should be
a true semantic parallel extension of the base language. JCilk ex-
tends serial Java by adding new keywords that allow the program
to execute in parallel. (JCilk currently omits entirely Java’s mul-
tithreaded support as provided by thier ead class, but we hope
eventually to integrate the JCilk extensions with Java threads.) If
the JCilk keywords for parallel control are elided from a JCilk pro-
gram, however, a syntactically correct Java program results, which
we call theserial elisionof the JCilk program. JCilk is &ithful
extension of Java, because the serial elision of a JCilk program is
a correct (but not necessarily the sole) interpretation of the JCilk
program’s parallel semantics.

To be specific, JCilk introduces three new keywordsci k,
spawn, andsync — which are the same keywords used to extend
C into Cilk, and they have essentially the same meaning in JCilk as
they do in Cilk. The keyworai | k is used as a method modifier
to declare the method to beca | k method which is analogous
to a regular Java method except that it can be spawned to execute
in parallel. When a parent method spawns a child method, which
is accomplished by preceding the method call with spawn
keyword, the parent can continue to execute in parallel with its
spawned child. Theync keyword acts as a local barrier. JCilk
ensures that program control cannot go beyosy ac statement
until all previously spawned children have terminated. In general,
until aci | k method executes sync statement, it cannot safely
use results returned by previously spawned children.

To illustrate how we have introduced these Cilk primitives into



As a testament to how well JCilk integrates Java’'s exception

% cil :(nlt ”tN f_1g) a\{m ) mechanism with Cilk'sspawn and sync constructs, program-

3 int x = B?) : ' ming §pegulative appligatiops in JCiII.< is even more.sFraightforward
4 int y = spawn Q(); than in Cilk. Speculation is essential for parallelizing programs
5 int z=0D); such as branch-and-bound or heuristic search [7,9, 21]. The Cilk
6 sync; language provides the keyworilsl et andabort, which al-

7 return w+ x +y + z; low speculative computation to be managed. JCilk’s integration of
8 } Cilk’s parallel control withspawn andsync and Java’s exception-

handling semantics make Cilkiml et andabort keywords un-
necessary for programming speculative applications such as the
so-called “queens” problem. As we shall see, however, the inlet
and abort mechanisms still exist conceptually within the JCilk lan-
guage.

In this paper, we describe JCilk semantics and how Cilk-like
multithreading is integrated with Java’s existing exception seman-
tics. (For descriptions of the implementation of JCilk’'s compiler
and runtime system, see [8,24].) Section 2 describes the basic con-
their returned values as its returned value in line 7. cepts underlying JCilk, and Section 3 explains JCilk’'s exception

The original Cilk language provided these simple semantics for semantics more precisely. Section 4 shows how JCilk’s I_inguistic
spawn andsync but with no semantics for exceptions, because constructs can be useq to program a search for a solution tg the
spawned functions in Cilk can only return, just as C functions can 9u€ens problem. Section 5 presents related work, and Section 6
only return. Java, however, allows a method to signal an exception Provides some concluding remarks.
rather than return normally, and JCilk's semantics must cope with .
this eventuality. How should the code in Figure 1 behave when one 2. BASIC JCilk CONCEPTS
or more of the spawned or called methods signals an exception? This section describes the basic concepts underlying the JCilk

In ordinary Java, an exception causes a nonlocal transfer of con-language beyond the simptg | k, spawn, andsync keywords
trol to nearest dynamically enclosirmat ch clause that handles  described in Section 1. We present the language’s syntax, its as-
the exception. Thdava Language Specificati¢h3, pp. 219-220] sumption of “implicit atomicity,” and its built-in exception class
states, Ci | kAbort. Section 3 will elaborate on how JCilk uses these
concepts in its linguistic design.

Figure 1: A simple JCilk program.

Java, consider the simple JCilk program shown in Figure 1. The
methodf 1 spawns the method to run in parallel in line 2, calls
the methodB normally (serially) in line 3, spawn€ in parallel

in line 4, calls method normally in line 5, and then itself waits

at thesync in line 6 until all the subcomputations and C have
completed. When they both complefe]l computes the sum of

“During the process of throwing an exception, the
Java virtual machine abruptly completes, one by one, Syntax
any expressions, statements, method and constructor
invocations, initializers, and field initialization expres-
sions that have begun but not completed execution in
the current thread. This process continues until a han-
dler is found that indicates that it handles that particu-
lar exception by naming the class of the exception or a
superclass of the class of the exception.”

JCilk inherits its basic mechanisms for parallelism from Cilk. As
mentioned in Section 1, JCilk includes three new keywocdls:k,
spawn, andsync. The keyworcci | k is used as a method modi-
fier, andspawn andsync cannot be used in a Java method unless
the method is ai | k method. In order to make parallelism plain to
programmers, JCilk enforces the constraint $@awn andsync
can only be used inside a method declared tabkk. A cil k
In JCilk, we have striven to preserve these semantics while extend-method can call a Java method, but a Java method cannot spawn
ing them to cope gracefully with the parallelism provided by the (or call) aci | k method. Similarly, aci | k method can only
Cilk primitives. Specifically, JCilk extends the notion of “abruptly be spawned but cannot be called. In addition to being a method
completes” to encompass the implicit aborting of any spawned side modifier, theci | k keyword can be used as a modifier of ay
computations along the path from the point where the exception is statement, and JCilk enforces the constraint $ipetwn andsync
thrown to the point where it is caught. Thus, for example, in Fig- keywords can only be used withina | k try block, but not
ure 1, if Aand/orCis still executing wherD throws an exception, within anycat ch or fi nal | y clauses of thei | k t ry state-
then they are aborted. ment. Placingspawn or sync keywords within an ordinaryry

A little thought reveals that the decision to implicitly abort side block is illegal in JCilk. The reasadnr y blocks containing pawn
computations opens a Pandora’s box of subsidiary linguistic prob- andsync must be declaredi | k is that when an exception oc-
lems to be resolved. Aborting might cause a computation to be curs, these r y statements may contain multiple threads of control
interrupted asynchronously [13, Sec. 11.3.2], causing havooin pr  during exception handling. Although a JCilk compiler could detect
grammer understanding of code behavior. What exactly gets aborteé@nd automatically insertei | k keyword before @ ry statement
when an exception is thrown? Can the abort itself be caught so thatcontainingspawn or sync, we feel the programmer should be
a spawned method can clean up? explicitly aware of the inherent parallelism. We disallswpawn

We believe that JCilk provides good solutions to these subsidiary andsync within cat ch orf i nal | y clauses for implementation
problems. JCilk provides for “semisynchronous” aborts to sim- simplicity, but we might consider revisiting this decision if a need
plify the reasoning about program behavior when an abort occurs. arises.
The semantics of JCilk make it easy to understand the behavior
of parallel code when exceptions occur, while faithfully extending
Java semantics. JCilk provides for aborts themselves to be caughtWhen aci | k method is spawned,lacus of controlis created for
by defining a new subclass @hr owabl e, calledCi | kAbort, the method instance, which is more-or-less equivalent to its pro-
thereby allowing programmers to clean up an aborted subcomputa-gram counter. When the method returns, its locus of control is de-
tion. stroyed. For example, in the simple JCilk program from Figure 1,

Loci of control



In addition, two threads corresponding to the assignmenisaoid

% cil :(nlt ”; f 2()_ g. y inlines 2 and 4 are executed by secondary loci of control.

3 X = sba&n A(i; In Figure 2, similar threads can bg determined, but. in addition,
4 y += spawn B(); when a spawned method suchi&# line 4 returns, an inlet runs

5 y += spawn C(); the updating ofy as a separate thread from the others. JCilk’s sup-
6 y += (); port for implicit atomicity guarantees that all JCilk threads execut-
7 sync; ing in the same method instance execute atomically with respect to
8 return x +y; each other, that is, the instructions of the threads do not interleave.
o 1} Said more operationally, JCilk's scheduler performs all its actions

at thread boundaries, and it executes only one of a method’s threads
at a time. In the case d¢f2, the updates of in lines 4, 5, and 6
all execute atomically. The updates caused by the returBsaofl

Figure 2: Implicit atomicity allows programmers to rea-
son about multiple JCilk threads operating within the same

method. C are executed by JCilk’s built-in inlets, and the update caused by
D's return is executed bfy2’s primary locus of control.

the spawning oA andCin lines 2 and 4 creates new loci of control Implicit atomicity places no constraints on the interactions be-

that can executé andCindependently from their parefitl. tween two JCilk threads in different method instances, however. It

A ci | k method contains only onprimary locus of control. is the responsibility of the programmer to handle those interactions

When it calls an ordinary Java (nai-l k) method, we view the using synchronized methods, locks, nonblocking synchronization

Java method as executing using thid k method’s primary locus (which can be subtle to implement in Java due to its memory model

of control. In Figure 1, for example, the methd@isndD in lines — see, for example, [12,23,26,33]), and other such techniques. W

3 and 5 execute usirfgl's primary locus of control. do not attempt here to address these synchronization issues, which
JCilk allowssecondanyloci of control to be created as well. In ~ appear to be orthogonal to the control issues discussed in this paper.

particular, when ai | k method is spawned, its return value is

incorporated into the parent method by a secondary locus of con-The G | kAbor t exception

trol. Incorporating a return value may be more involved than for a Because of the havoc that can be caused by aborting computations

simple assignment, as is shown in Figure 1 for variabiesdy . asynchronously, JCilk leverages the notion of implicit atomicity
Figure 2 illustrates a program in which the returned values from py ensuring that aborts occaemisynchronouslythat is, when a
spawned method8 andC and called metho® augment the vari-  method is aborted, all its loci of control reside at thread boundaries.

abley, rather than just assigning to it, as the return value flom  jcilk provides a built-in exceptidrclassGi | kAbor t , which in-
does to the variable. Although a child's locus of control normally  perits directly fromThr owabl e, as do the built-in Java exception
stays within the child, for circumstances such as those in lines 4 classesExcept i on andEr ror . When JCilk determines that a
and 5, the child's locus of control operates for a time in its par- method must be aborted, it cause€id kAbort to be thrown in

entf 2 to perform the update. JCilk encapsulates these secondaryihe method. The programmer can choose to catchlakAbor t

loci of control using a mechanism from the original Cilk language, jf clean-up is desired. The catching and handling 6f &k Abor t

called aninlet, which is a small piece of code that operates within exception is not required, however, and @i kAbor t exception

the parent on behalf of the child. Although Cillk'sil et keyword is implemented as an unchecked exception.

does not find its way into the JCilk language, as we shall see in  gemisynchronous aborts ease the programmer’s task of under-
Section 3, the concept of an inlet is used extensively when handling standing what happens when the computation is aborted, limiting
exceptions in JCilk. the reasoning to those points where parallel control must be un-
derstood anyway. For example, in Figure 1Gfthrows an ex-
ception whenD is executing, then the thread runnimgwill re-
Since reasoning about race conditions between an inlet and the parturn from D and run to thesync in line 6 of f 2 before possibly

ent, or between inlets, could be problematic, JCilk supports the ideabeing aborted. Since aborts are by their nature nondeterministic,
of implicit atomicity. To understand this concept, we first define a JCilk cannot guarantee that when an exception is thrown, a compu-
JCilk thread" to be a maximal sequence of instructions executed tation always immediately aborts when its primary locus of control
by the same locus of control that includes no parallel control. From reaches the next thread boundary. What it promises is only that

Implicit atomicity

a syntactic point of view, a JCilk thread containssgawn, sync, when an abort occurs, the primary locus of control residese
or exit from aci | k block (ci | k method orci | k t ry). thread boundary, and likewise for secondary loci of control.

For example, when the methdd in Figure 1 runs, four threads
are executed bf/1's primary locus of control: .
1. from the beginning of 1 to the point in line 2 where thA 3. THE JCilk LANGUAGE FEATURES

computation is actually spawned, This section discusses the semantics of JCilk exceptions. We

2. from the point in line 2 where th& computation is actually ~ Pegin with asimple example of the usewfl k t ry thatillustrates
spawned to the point in line 4 where tcomputation is two important notions. _The first is the concept that a primary locus
of control can leave &i | k t ry statement before the statement
actually spawned, i ) > Sl >
S Lo completes. The second is the idea of a “catchlet,” which is an inlet
3. from the point in line 4 where th€ computation is actually :
L that executes the body of tleat ch clause of eci | k try. We
spawned to theync in line 6, ) : . .
- . then give a complete semantics farl k t r y. We conclude with
4. from thesync in line 6 to the point wheré 1 returns. a description of how th&i | kAbor t exception can be handled by

Although JCilk is implemented using Java threads, JCilk threads user code.
and Java threads are different concepts. Generally, when we say
“thread,” we mean a JCilk thread. If we mean a Java thread, we ?In keeping with the usage in [13], when we refer to an exception,
shall say so explicitly. we mean any instance of the cladsr owabl e or its subclasses.




1 cilkint f3() {

2 int x, vy;

3 cilk try {

4 X = spawn A();

5 } catch(Exception e) {
6 x = 0;

7 }

8 cilk try {

9 y = spawn B();

10 } catch(Exception e) {
11 y = 0;

12 }

13 sync;

14 return x +vy;

15 }

Figure 3: Handling exceptions withci | k t ry when aborting
iS unnecessary.

Theci |l k try statement

Figure 3, which shows an example of the useiof k t r y, demon-
strates how this linguistic construct interacts with the spawning of
subcomputations. The parent metha8 spawns the chilai | k
methodAin line 4, but its primary locus of control continues within
the parent, proceeding to spawn another cBilid line 9. As be-
fore, the primary locus of control continuesfi® until it hits the
sync in line 13, at which poinf 3 is suspended until the two chil-
dren complete.

Observe that 3’s primary locus of control can continue on be-
yond the scope of thei | k t ry statements even thoughand
B may yet throw exceptions. If the primary locus of control were
held up at the end of thei | k t r y block, writing acat ch clause
would preclude parallelism.

In the code from the figure, if one of the children throws an
exception, it is caught by the correspondingt ch clause. The
cat ch clause may be executed long after the primary locus of con-
trol has left theci | k t ry block, however. As with the example of
an inlet updating a local variable in Figure 2, if meth&dignals
an exceptionA’s locus of control must operate dr8 to execute
thecat ch clause in lines 5-7. This functionality is provided by a
catchlet which is an inlet that runs on the parent (in this ca8¢
of the method (in this casa) that threw the exception. As with
ordinary inlets, JCilk guarantees that the catchlet runs atomically
with respect to other loci of control running 613.

Similar to a catchlet, dinallet runs atomically with respect to
other loci of controlif theci | k t r y statement containsfa nal | y
clause.

Aborting side computations

We are almost ready to tackle the full semanticxcof k try,
which includes the aborting of side computations when an excep-
tion is thrown, but we require one key concept in the Java language
specification [13, Sec. 11.3]:

“A statement or expressiondynamically enclosed
by acat ch clause if it appears within ther y block
of thet ry statement of which theat ch clause is a
part, or if the caller of the statement or expression is
dynamically enclosed by theat ch clause.”

In Java code, when an exception is thrown, control is transferred

from the code that caused the exception to the nearest dynamically

enclosingcat ch clause handles the exception.
JCilk faithfully extends these semantics, using the notion of “dy-
namically enclosing” to determine, in a manner consistent with

1 vcilkint f4() {

2 int x, vy, z;

3 cilk try {

4 X = spawn A();
5 y = spawn B();
6 } catch(Exception e) {
7 X =y =0,

8 handl e(e);

9

10 z = spawn C();

11 sync;

12 return x +y + z;
13}

Figure 4: Handling exceptions withci | k t ry when aborting
might be necessary.

Java’s notion of “abrupt completion,” which method instances should
be aborted. (See the quotation in Section 1.) Specifically, when
an exception is thrown, JCilk delivers@ | kAbort exception
semisynchronously to th@de computation®f the exception. The
side computations include any method that is also dynamically en-
closed by thecat ch clause that handles the exception. The side
computations also include the primary locus of control of the method
containing thati | k t r y statement if that locus of control still re-
sidesinthei | k t r y statement. JCilk thus throwsGi | kAbor t
exception at the point of the primary locus of control in that case.
Moreover, thecat ch clause handling th€i | kAbor t thrown a
to-be-abortedi | k block is not executed until all its children have
completed, allowing the side computation to be “unwound” in a
structured way from the leaves up.

Figure 4 shows a&i | k t ry statement. If method throws an
exception that is caught by tleat ch clause beginning in line 6,
the side computation that is signaled to be aborted incl&dmsd
any of its descendants, if B has been spawned but hasn't returned.
The side computation also includes the primary locus of control for
f 4, unless it has already exited thel k t ry statement. It does
not includeC, which is not dynamically enclosed by tloat ch
clause.

JCilk makes no guarantees that @id kAbor t is thrown quickly
or even at all after it signals an exception’s side computation to
abort. It simply offers a best-effort attempt to do so. Linguistically,
the side computations are executed speculatively, and the overall
correctness of a programmer’s code must not depend on whether
the “aborted” methods complete normally or abruptly.

The semanticsofci | ktry

After an exception is thrown, when and how is it handled? The
exception-handling mechanism decomposes exception handling into
six actions:
1. Select an exception to be handled by the nearest dynamically

enclosingcat ch clause that handles the exception.
Signal the side computations to be aborted.
Wait until all dynamically enclosed spawned methods com-
plete, either normally or abruptly by dint of Action 2.
. Wait until the primary locus of control for the method exits

theci | k t ry block, either normally or by dint of Action 2.

2.
3.

[

. Run the catchlet associated with the selected exception.
. Iftheci I k try contains & i nal | y clause, run the asso-
ciated finallet.
The exception-handling mechanism executes these actions as fol-
lows. If one or more exceptions are thrown, Action 1 selects one

(e}



1 cilkint f5() { 1 vcilkint f6() {
2 for(int i=0; i<10; i++) { 2 for(int i=0; i<10; i++) {
3 int a=0; 3 int a=0;
4 cilk try { 4 int icopy =i;
5 a = spawn A(i); 5 cilk try {
6 } finally { 6 a = spawn A(icopy);
7 Systemout.println("In iteration " 7 } finally {
8 +i +" Areturns " + a); 8 Systemout.printin("In iteration "
9 } 9 + icopy +" Areturns " + a);
10 } 10 }
11 sync; 11 }
12} 12 sync;
13}

Figure 5: A loop containing aci | k try illustrating a race ) _ ) _ ]
condition between the update of in line 2 and the read ofi in Figure 6: JCilk's lexical-scope rule can be exploited to fix the
line 8. race condition from Figure 5.

of them. Mirroring Java’s cascading abrupt completion, all dynam- Iir_1e 2 in parallel wit_h the se(_:o_ndgry locus of control_executing the
ically enclosecti | k t ry statements between the point where the final |y block which reads in line 8. Whereas JCilk's support
exception is thrown and where it is caught also select the samefor implicit atomicity guarantees that ttié nal | y block executes
exception, even though theimt ch clauses do not handle it. Ac- atomically with respect tb5’s primary locus of c_ontrol, it does not

tion 2 is then initiated to signal the side computation to abort. The guarantee that data races do not occur. In this case, the data race
mechanism now waits in Actions 3 and 4 until the side computa- Makes the code incorrect. _ _

tions terminate. At this point Action 5 safely executes ¢fag ch The race condition in the code from Figure 5 can be fixed by
clause, which is followed by Action 6 to execute thenal | y declaring a new loop local variablecopy, as shown in Figure 6.
clause, if it exists. The only differences between code in Figure 5 and Figure 6 are the

We made the decision in JCilk that if multiple concurrent excep- additional declaration of a loop variablecopy in line 4 and the
tions are thrown to the saneé | k block, only one is selected to be ~ réading ofi replaced with the reading ofcopy in line 9. Every
handled. In particular, if one of these exceptions @ & kAbor t timef 6 iterates its loop, a new copy of variableopy is created
exception, theGi | kAbort exception is selected to be handled. @nd initialized with the current value of. When thef i nal |y
The rationale is that the other exceptions come from side compu- clause executes on behalf of an iterationthef i nal I'y clause
tations, which will be aborted anyway. This decision is consistent "€ads and prints the corresponding valué cbpy as determined
with ordinary Java semantics, and it fits in well with the idea of DY alexical-scope rulg4, Sec. 7.4].
implicit aborting.

The decision to allow the primary locus of control possibly to
exitaci | k t ry block with af i nal | y clause before the finallet  In the original Cilk language, when a side computation is aborted,
is run reflects the notion thé&t nal | y is generally used to clean it essentially just halted and vanished without giving the program-
up [13, Ch. 11], not to establish a precondition for subsequent exe- mer any opportunity to clean up partially completed work. JCilk
cution. Moreover, JCilk does provide a mechanism to ensure that aexploits Java’'s exception semantics to provide a natural way for
final |y clause is executed before the code following té k programmers to handl@ | kAbor t exceptions.

t ry statement: simply placesync statement immediately after When JCilk's exception mechanism signals a method in a side
thefi nal | y clause. computation to abort, it cause€al kAbor t to be thrown semisyn-
chronously within the method. The programmer can catciCthe Abor t
exception and restore any modified data structures to a consistent
state. As when any exception is thrown, pertirfeinhal | y blocks,

if any, are also executed.

The code in Figure 7 shows hdd | kAbor t exceptions can be
caught. If any ofA, B, or Cthrows an exception that is not handled
within f 7 while the others are still executing, then those others are
aborted. Any spawned methods that abort have their corresponding
cleanup method called.

Handling aborts

Secondary loci of control within loops

When a primary locus of control exitsa@ | k try block in a
loop before itscat ch clause off i nal | y clause is run and pro-
ceeds to another iteration of a loop, a secondary locus of control
eventually executes theat ch orf i nal | y clause. Asin the Cilk
language, this situation requires the programmer to reason carefully
about the code.

In particular, it is possible to write code with a race condition,
such as the one illustrated in Figure 5. The programmer is at-
tempting to spawmA( 0) , A(1), ..., A(9) in parallel and print 4. THE QUEENS PROBLEM
out the values returned for each iteration with the iteration num-  To demonstrate some of the JCilk extensions to Java, this section
beri . Unfortunately, the primary locus of control may change the illustrates how the so-called “queens” puzzle can be programmed.
value ofi before a given child completes, and thus the secondary The goal of the puzzle is to find a configuratiorrofiueens on an
locus of control created when the child returns will use the wrong n-by-n chessboard such that no queen attacks another, that is, no
value when it executes the print statementin line 8 iftheal | y two queens occupy the same row, column, or diagonal. Figure 8
clause. shows how a solution to the queens puzzle can be implemented in

This situation is called data race(or, ageneral race as defined JCilk. The program would be an ordinary Java program if the three
by Netzer and Miller in [29]), which occurs when two threads op- keywordsci | k, spawn, andsync were elided, but the JCilk se-
erating in parallel both access a variable and one modifies it. In this mantics make this a highly parallel program.
case,f 5’s primary locus of control increments the valueiofin The program uses a speculative parallel search. It spawns many



1 cilk void f7() { 1 public class Queens {

2 cilk try { 2 private int n;

3 spawn A() .

4 } catch(G | kAbort e) { :

5 cl eanupA(); 3 private cilk void q(int[] cfg, int row)

6 throws Result {

7 cilk try { 4 if(row == n) {

8 spawn B() 5 throw new Resul t (cfg);

9 } catch(Gi | kAbort e) { 6 }
10 cl eanupB();
11 7 for(int col = 0; col < n; col++) {
12 cilk try { 8 int[] ncfg = newint[n];
13 spawn C() 9 System arraycopy(cfg, 0, ncfg, 0, n);
14 } catch(Ci | kAbort e) { 10 ncfg[row = col;
15 cl eanupC();
16 } 11 if(safe(row, col, ncfg)) {
17 sync; 12 spawn g(ncfg, rowtl);
18 '} 13

14 }
Figure 7: Catching Ci | kAbort . ig , sync;
branches in the hopes of finding a “safe” configuration of the ~ ' public static cilk void
. . . mai n(String argv[]) {

queens, and when one branch discovers such a configuration, the
others are aborted. JCilk's exception mechanism makes this strat- :
egy easy to implement. 18 int n = Integer.parselnt(argv[0]);

The queens program works as follows. When the program starts, 19 int[] cfg = newint[n];
the mai n method constructs a new instance of the classens 0 int[] ans = null;
with user inputn and spawns itg) method to search for a safe ;

! . . L 21 cilk try {

configuration. Methoc_t] takes in two argumentscf g, Whlch is 22 spawn (new Queens(n)).q(cfg, 0);
the current configuration of queens on the board, raod, which 23 } catch(Result e) {
is the current row to be searched. It loops through all columns 24 ans = (int[]) e.getValue();
in the current row to find safe positions to place a queen in the 25 } _
current row. The ordinary Java metheadf e, whose definition 6 syne;
we omit for brevity, determines whether placing a queen in row if(ans 1= null) {
row and columncol conflicts with other queens already placed g System out. print("Sol ution: ");
on the board. If there is no conflict, anotteemethod is spawned 29 for(int i =0; i <n; i++) {
to perform the subsearch with the new queen placed in the position 30 Systemout.print(ans[i] + " ");
(row, col ). 31 } o

The newly spawned subsearch can run in parallel with all other 32 ) elsé’zt ?m out.print("\n");
;ubsearche_s spa\_/vne_d SO _far. The parallel segrch continues un_tll ity System out. printin("No sol utions.");
finds a configuration in which every row contains a queen. At this 35 }
pointcf g contains a legal placement of allqueens. The success- 36 }
ful @ method throws the user-defined exceptResul t (whose 37}

definition we also omit for brevity) to signal that it has found a so-
lution. TheResul t exception is used to communicate between Figure 8: The queens problem coded in JCilk. The program
theq andmai n methods. searches in parallel for a single solution to the problem of plac-
The program exploits JCilk’s implicit abort semantics to avoid iNg n queens on ann-by-n chessboard so that none attacks
extraneous computation. When one legal placement is found, someanother. The search quits when any of its parallel branches
outstandingy methods might still be executing; those subsearches finds a safe placement. The methodaf e determines whether
are now redundant and should be aborted. The implicit abort mech-it is possible to place a new queen on the board in a par-
anism does exactly what we desire when a side computation throwsticular square. The Resul t exception (which extends class
an exception: it automatically aborts all sibling computations and Excepti on) is used to notify themai n method when a result
their children dynamically enclosed by the catching clause. In this is found.
example, since thResul t exception propagates all the way up to
themai n method, all outstanding methods will be aborted auto-
matically. To ensure that all side computations have terminated and
thecat ch clause has been executed, thee n method executes a
sync statement before it prints out the solution.

faithful extension of the semantics of a serial exception mechanism,
that is, the serial elision of the JCilk program is a Java program that
implements the JCilk program’s semantics.
Most parallel languages do not provide an exception-handling
5. RELATED WORK mechanism. For example, none of the parallel functional languages
This section discusses related work. We attempt to place JCilk VAL [1], SISAL [11], Id [30], parallel Haskell [3, 31], MultiL-
and its exception-handling semantics into the context of parallel isp [15], and NESL [5] and none of the parallel imperative lan-
programming languages. A key difference between JCilk and other guages Fortran 90 [2], High Performance Fortran [34] [28], Decla
work on concurrent exception handling is that JCilk provides a ative Ada [37, 38], C* [16], Dataparallel C [17], Split-C [6], and



Cilk [35] contain exception-handling mechanisms. The reason for Cal | abl e’s method returned. If that method throws an exception,
this omission is simple: these languages were derived from serialthenFut ur e. get throws anExecut i onExcept i on contain-
languages that lacked such linguistics. ing the original exception as its cause. (THt ur e object also
Some parallel languages do provide exception support becauseprovides a nonblockingsDone method to see if th€al | abl e
they are built upon languages that support exception handling un-is already done.)
der serial semantics. These languages include Mentat [14], which  One notable difference between JCilk and Java 1.5 is that JCilk's
is based on C++; OpenMP [32], which provides a set of compiler parallel semantics for exceptions faithfully extend Java’s serial se-
directives and library functions compatible with C++; and Java mantics. Although Java 1.5’s exception mechanism is not a seam-
Fork/Join Framework [22], which supports divide-and-conquer pr  less and faithful extension of its serial semantics, as a practical mat-
gramming in Java. Although these languages inherit an exception-ter, it represents a positive step in the direction of making parallel
handling mechanism, their designs do not address exception-handliegmputations linguistically callable.
in a concurrent context.
Tazuneki and Yoshida [36] and Issarny [19] have investigated
the semantics of concurrent exception-handling, taking different 6. CONCLUSI_ONS )
approaches from our work. In particular, these researchers pur- CLU [25] was the first language to cleanly define the seman-
sue new linguistic mechanisms for concurrent exceptions, rather fics for an exception-handling mechanism, but only in a serial con-
than extending them faithfully from a serial base language as doestext. Although much effort has been spent on developing tools,

JCilk. The treatment of multiple exceptions thrown simultaneously Software, and languages to aid in the writing of multithreaded pro-
is another point of divergence. grams, comparatively little research explores how exception mech-

Tazuneki and Yoshida’s exception-handling framework is intro- anisms should be extended to a concurrent context. The JCilk Ian-
duced in the context of DOOCE, a distributed object-oriented com- guage explores how concurrency can be made semantically consis-
puting environment. They focus on handling multiple exceptions tent with the exception mechanisms of modern serial computing.
which are propagated from concurrently active objects. DOOCE Our research Iea\{es us optimistic that the sometlmes-arc_ane world
adapts Java’s syntax for exception handling, extending it syntacti- Of parallel computing and the day-to-day world of commodity com-
cally and semantically to handle multiple exceptions. Unlike JCilk, Puting may eventually be united.
however, DOOCE allows a program to handle multiple exceptions
by listing several exception classes as parameters to a siagleh Acknowledgments
clause with the semantics that that ch clause executes only
when all those exceptions are thrown. DOOCE's semantics in-
clude a new resumption model as an alternative to the termination
model of Java: when exceptions occur and are handledtlay ah
clause, theat ch clause can indicate that the program should re-
sume execution at the beginning of they statement instead of
after thecat ch block.
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tween threads. If a thread terminates due to an exception, all later [1] W. Ackerman and J. B. Dennis. VAL — a value oriented alduriic
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