FECN Performance for Multistage Output Generated Hotspot Configuration

Jinjing Jiang, Raj Jain, and Chakchai So-In
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu
IEEE 802.1au Meeting, San Francisco July 18th, 2007
These slides are also available at:
http://www.cse.wustl.edu/~jain/ieee/fecn707a.htm
Overview

- Multistage Hot-Spot, Fast Start
- BCN
- FECN
Periodically, the sources probe the network for best available rate using “Rate Discovery packet”

- The probe contain only rate, Rate limiting Q ID
- The sender initializes the probes with rate=\(-1 \) (\(\Rightarrow \infty \))
- Each switch computes an “advertised rate” based on its load
- The switches adjust the rate in probe packets down if necessary
- The receiver reflects the RD packets back to the source
- Source send at the rate received
Simulation Results (Multi-Stage Hotspot)

- Multi-stage Output-Generated Hotspot Scenario
 - Link Speed = 10Gbps for all links
 - Loop Latency = 8us

- Traffic Pattern
 - 100% UDP (or Raw Ethernet) Traffic
 - Destination Distribution: Uniform distribution to all nodes (except self)
 - Frame Size Distribution: Fixed length (1500bytes) frames
 - Offered Load
 - Nodes 1-6 = 25% (2.5Gbps)
 - Nodes 7-10 = 40% (4Gbps)
BCN + BCN_{max} + 2Q_{eq} + HSSS

Need 50ms!

Up to 300ms in other versions

Ref: au-sim-bergamasco-multihop-output-generated-010407v1
FECN’s transient response is 2.5 times faster
=> Higher overall throughput.

Fast start with Pause

20ms
FECN Link Throughputs (T=1ms)
FECN Queue Lengths (T=0.25ms)

Conclusion: FECN’s transient response is 5 times faster than BCN => Higher throughput
FECN Link Throughput (T=0.25ms)

Link Throughput (Mbps)

Time (s)

Link 1
Link 2
Link 3
Link 4
Link 5
Link 6
Link 7
Link 8
Link 9
Link 10
Summary

1. FECN by itself works well even with Fast start
2. FECN is 2.5 faster than BCN in multi-stage hot-spot cases
3. FECN has ten times lower overhead than BCN with 10% sampling
4. FECN can be made even faster by decreasing the sampling interval